
Chapter 1 — Computer Abstractions and Technology 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 1

Computer Performance

Transistors

n Fun facts about 45nm transistors:
n 30 million can fit on the head of a pin.
n 2,000 fit across the width of a human hair.
n If car prices had fallen at the same rate as the price of a

single transistor has since 1968, a new car today would cost
about 1 cent.

Chapter 1 — Computer Abstractions and Technology 2

Understanding Performance

n Algorithm
n Determines the number of operations executed.

n Programming language, compiler, architecture
n Determines the number of machine instructions executed per

operation.
n Processor and memory system

n Determines how fast instructions are executed.

Performance Metrics

n Possible measures:
n Response time – elapsed time between start and end of a

program (important to individual users).
n Throughput – amount of work done in a fixed amount of time

(important to data centers).
n The two measures are usually linked:

n A faster processor will improve both.
n Near-future processors will likely only improve throughput.
n Some architecture improvements will improve throughput and

worsen response time, like pipelining.

Chapter 1 — Computer Abstractions and Technology 3

Speedup and Improvement

n Example
1. What is the speedup of System X over System Y if System X

executes a program in 10 seconds and system Y executes the
same program in 15 seconds?

2. What is the percentage reduction in execution time for the
program of X compared to Y?

3. What is the percentage increase in execution time for the
program of Y compared to X?

5 seconds or 1.5 times

(15-10) /15 = 33%

(15-10) /10 = 50%

CPU Clocking
n Operation of digital hardware is governed by a constant-

rate clock:

n Clock frequency (rate) – cycles per second
n e.g., 4.0GHz = 4000MHz = 4.0×109Hz

n Clock period – duration of a clock cycle
n e.g., 250ps = 0.25ns = 250×10–12s

Clock (cycles)

Data transfer
and computation

Update state

Clock period

Chapter 1 — Computer Abstractions and Technology 4

Performance Equation #1

n Example #1:
n If a program runs for 10 seconds on a 3 GHz processor, how

many clock cycles did it run for?
n Example #2:

n If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?

!"# $%$&'()*+ (),$ = (!"# &/*&0 &1&/$2)(&/*&0 &1&/$ (),$)

&/*&0 &1&/$ (),$ = 1
&/*&0 25$$6

30 billion

1.333

Performance Equation #2

n CPI = Clock Cycles Per Instruction.

!"# !$%!& !'!$() = (,#-.(/ %0 1,)2/#!21%,))(456)
n Substituting in the previous equation,

(7(!#21%, 21-(= (!$%!& !'!$(21-()(,#-.(/ %0 1,)2/#!21%,))(456)

n Example:
n If a 2 GHz processor completes an instruction every third cycle,

how many instructions are there in a program that runs for 10
seconds? 10(2E9)/3 = 6.667E9

Chapter 1 — Computer Abstractions and Technology 5

Performance Equation Summary
n Our basic performance equation is then:

or

§ These equations separate the key factors that affect
performance:
§ The CPU execution time is measured by running the program.
§ The clock rate is usually given.
§ The overall instruction count is measured by using profilers or

simulators.
§ CPI varies by instruction type and the instruction set

architecture.

!"# $%&' = (*+,*- *.*+' $%&')(%01$23*$%,0 *,30$)(!"4)

!"# $%&' = (%01$23*$%,0 *,30$)(!"4)
+,- 25$'

Finding Average CPI
n Computing the overall effective CPI is done by looking

at the different types of instructions and their individual
cycle counts and averaging:

Overall effective CPI = S (CPIi x ICi)
i = 1

n

§ Where ICi is the count (percentage) of the number of
instructions of class i executed.

§ CPIi is the (average) number of clock cycles per instruction for
that instruction class.

§ n is the number of instruction classes.

Chapter 1 — Computer Abstractions and Technology 6

Optimizing Example

n How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

n How does this compare with using branch prediction to shave
a cycle off the branch time?

n What if two ALU instructions could be executed at once?

Op Freq CPIi Freq x CPIi
ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

S =

.5

1.0

.3

.4

2.2

CPU time new = 1.6 x IC x CC so 2.2/1.6 means 37.5% faster

1.6

.5

.4

.3

.4

.5

1.0

.3

.2

2.0

CPU time new = 2.0 x IC x CC so 2.2/2.0 means 10% faster

.25

1.0

.3

.4

1.95

CPU time new = 1.95 x IC x CC so 2.2/1.95 means 12.8% faster

SPEC Benchmarking

n SPEC – System Performance Evaluation Corporation,
an industry consortium that creates a collection of
relevant programs.
n The 2006 version includes 12 integer and 17 floating-point

applications.
n The SPEC rating specifies how much faster a system is,

compared to a baseline machine – a system with SPEC rating
of 600 is 1.5 times faster than a system with SPEC rating of
400.

n Note that this rating incorporates the behavior of all 29
programs – this may not necessarily predict
performance for your favorite program.

Chapter 1 — Computer Abstractions and Technology 7

Benchmarking Performance

n Each vendor announces a SPEC rating for their system:
n A measure of execution time for a fixed collection of programs.
n It is a function of a specific CPU, memory system, IO system,

operating system, compiler.
n Enables easy comparison of different systems.

n The key is coming up with a collection of relevant
programs.

CINT2006 for Intel Core i7 920

Chapter 1 — Computer Abstractions and Technology 8

Deriving a Single Performance Number

n How is the performance of 29 different apps
compressed into a single performance number?

n SPEC uses Geometric Mean (GM) – the execution time
of each program is multiplied and the Nth root is derived.

n Another popular metric is Arithmetic Mean (AM) – the
average of each program’s execution time.

n Yet another is the Weighted Arithmetic Mean – the
execution times of some programs are weighted to
balance priorities.

Amdahl’s Law

n Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a
component that has little impact on overall
performance/power.

n Amdahl’s Law states that the performance improvement
through an enhancement is limited by the fraction of
time the enhancement comes into play:

unaffected
affected

improved T
factor timprovemen

TT +=

Chapter 1 — Computer Abstractions and Technology 9

Amdahl’s Law Example

unaffected
affected

improved T
factor timprovemen

TT +=

n In a certain program, multiply instructions account for
80 seconds of the 100 second execution time. How
much improvement in multiply is needed to double
performance?

50 = 80
% + 20

n = 8/3

Common Principles for Computers

n Make the common case fast.
n Principle of locality

n The same data/code will be used again (temporal locality).
n Nearby data/code will be used next (spatial locality).

n Energy
n Systems use energy even when idle.

n 90/10 rule – 10% of the program accounts for 90% of
the execution time.

n Amdahl’s Law.

Chapter 1 — Computer Abstractions and Technology 10

Chapter 1 Recap

n Knowledge of hardware improves software quality –
compilers, OS, threaded programs, memory
management.

n Important trends to follow:
n Transistor sizing.
n Move to multi-core.
n Slowing rate of performance improvement.
n Power/thermal constraints.
n Long memory/disk latencies.

n Reasoning about performance – clock speeds, CPI,
benchmark suites, performance equations.

n Next class period – MIPS architecture.

