

Understanding Performance

- Algorithm
 - Determines the number of operations executed.
- Programming language, compiler, architecture
 - Determines the number of machine instructions executed per operation.
- Processor and memory system
 - Determines how fast instructions are executed.

Performance Metrics Possible measures: Response time – elapsed time between start and end of a program (important to individual users). Throughput – amount of work done in a fixed amount of time (important to data centers). The two measures are usually linked: A faster processor will improve both. Near-future processors will likely only improve throughput and worsen response time, like pipelining.

CPU execution time = (CPU clock cycles)(clock cycle time)
1

 $clock\ cycle\ time = \frac{1}{clock\ speed}$

- Example #1:
 - If a program runs for 10 seconds on a 3 GHz processor, how many clock cycles did it run for? 30 billion
- Example #2:
 - If a program runs for 2 billion clock cycles on a 1.5 GHz processor, what is the execution time in seconds? 1.333

Performance Equation Summary

Our basic performance equation is then:

CPU time = (clock cycle time)(instruction count)(CPI)

or

$$CPU time = \frac{(instruction count)(CPI)}{clock rate}$$

- These equations separate the key factors that affect performance:
 - The CPU execution time is measured by running the program.
 - The clock rate is usually given.
 - The overall instruction count is measured by using profilers or simulators.
 - CPI varies by instruction type and the instruction set architecture.

Description	Name	Instruction Count x 10 ⁹	СРІ	Clock cycle time (seconds x 10 ⁻⁹)	Execution Time (seconds)	Reference Time (seconds)	SPECra
Interpreted string processing	perl	2252	0.60	0.376	508	9770	19.2
Block-sorting compression	bzip2	2390	0.70	0.376	629	9650	15.4
GNU C compiler	gcc	794	1.20	0.376	358	8050	22.5
Combinatorial optimization	mcf	221	2.66	0.376	221	9120	41.2
Go game (AI)	go	1274	1.10	0.376	527	10490	19.9
Search gene sequence	hmmer	2616	0.60	0.376	590	9330	15.8
Chess game (AI)	sjeng	1948	0.80	0.376	586	12100	20.7
Quantum computer simulation	libquantum	659	0.44	0.376	109	20720	190.0
Video compression	h264avc	3793	0.50	0.376	713	22130	31.0
Discrete event simulation library	omnetpp	367	2.10	0.376	290	6250	21.5
Games/path finding	astar	1250	1.00	0.376	470	7020	14.9
XML parsing	xalancbmk	1045	0.70	0.376	275	6900	25.1
Geometric mean	-	-	-	-	-	-	25.7

Г

Chapter 1 Recap

- Knowledge of hardware improves software quality compilers, OS, threaded programs, memory management.
- Important trends to follow:
 - Transistor sizing.
 - Move to multi-core.
 - Slowing rate of performance improvement.
 - Power/thermal constraints.
 - Long memory/disk latencies.
- Reasoning about performance clock speeds, CPI, benchmark suites, performance equations.
- Next class period MIPS architecture.