
1

Multi-Threading
Hyper-, Multi-, and 
Simultaneous Thread 
Execution

HaHaHaHa



2

Performance To Date
n Increasing processor performance:

n Pipelining.
n Branch prediction.
n Super-scalar execution.
n Out-of-order execution.
n Caches.
n Hyper-Threading:

n Intel’s implementation of Simultaneous Multi-threading 
Technology (SMT).

n Introduced in the Foster MP-based Xeon and
the 3.06 GHz Northwood-based Pentium 4 in 2002.

Threading

n A thread is the smallest sequence of programmed 
instructions that can be managed independently.

n A thread is composed of multiple instructions. Threads 
exist within the same process and could share the same 
resources while different processes do not share the 
same resources.

n Multi-threading is a type of execution model that allows 
multiple threads to exist within the context of a process 
such that they execute independently but share the 
process resources. A thread maintains a list of 
information relevant to its execution including the priority 
schedule, exception handlers, a set of CPU registers, 
and stack state in the address space of its hosting 
process.



3

Multi-threading on A Chip
n Multi-threading helps find a way to “hide” true data dependency 

stalls, cache miss stalls, and branch stalls by finding 
instructions (from other process threads) that are independent
of these stalling instructions.

n Hardware multi-threading – increase the utilization of 
resources on a chip by allowing multiple processes (threads) to 
share the functional units of a single processor:
n Processor must duplicate the state hardware for each thread – a 

separate register file, PC, instruction buffer, and store buffer for 
each thread.

n The caches, TLBs, BHT, BTB, can be shared.
n The memory can be shared through virtual memory mechanisms.

Overview

n Multi-threading:
n Uses processors resources in a highly efficient way.
n Consists of two logical processors for every physical core.
n Separate threads can be executed on each logical 

processor simultaneously.
n Here is a lame video

n Multi-threading is enhanced by Multi-core technology 
which allows the parallel execution of software threads 
across multiple processor cores.

https://www.youtube.com/watch?v=wnS50lJicXc


4

Simultaneous Multi-threading (SMT)

n A variation on multi-threading that uses the resources of 
a multiple-issue, dynamically scheduled processor to 
exploit both program Instruction-level-parallelism (ILP) 
and thread-level parallelism (TLP):
n Most superscaler processors have more machine level 

parallelism than most programs can effectively use (i.e., than 
have ILP).

n With register renaming and dynamic scheduling, multiple 
instructions from independent threads can be issued without 
regard to dependencies among them:

n Need separate rename tables for each thread or need to be able to 
indicate which thread the entry belongs to.

n Need the capability to commit from multiple threads in one cycle.

n Intel’s Pentium 4 SMT is called hyper-threading:
n Supports just two threads - doubles the architecture state.

Advantages and Disadvantages

Advantages of Hyper-threading:
n Performance boost by as much as 30% when compared 

to an identical processing core without hyper-threading.
Disadvantages of Hyper-threading:
n Possible increase in core size of about 5 percent caused 

by the duplication of certain sections of the CPU core 
(Intel's claim).

n Overall power consumption is higher.
n Increases cache thrashing (the repeated displacing and 

loading of cache blocks), which ARM claims could be as 
much as 42%.



5

Hyper-Threading Architecture
n Makes a single physical processor appear as multiple logical 

processors.
n Each logical processor has a copy of architecture state.
n Logical processors share a single set of physical execution 

resources.
n From an architecture perspective, we have to worry about the logical 

processors using shared resources:
n Caches, execution units, branch predictors, control logic, and buses.

HT vs. Dual Processors - Recap

n Dual Processor:
n System resources are duplicated.

n Hyper-Threading:
n Architectural state is duplicated:

n Data, segment, control, and debug registers.
n Resources shared by the logical CPU’s:

n Execution engine, caches, system-bus interface and 
firmware.



6

Implementing Multi-threading
n Two main questions when Multi-threading:

n Thread scheduling policy:
n When to switch threads?

n Pipeline partitioning:
n How do threads share the pipeline?

n The choices depend on:
n How much sacrifice you are willing to take in single thread 

performance.
n What kind of latencies you are willing to tolerate.

n The OS must support HT since it manages the threads.

Types of Multi-threading
n Fine-Grain – switch threads on every instruction issue:

n Round-robin thread interleaving (skipping stalled threads).
n Processor must be able to switch threads on every clock cycle.
n Advantage – can hide throughput losses that come from both 

short and long stalls.
n Disadvantage – slows down the execution of an individual 

thread since a thread that is ready to execute without stalls is 
delayed by instructions from other threads.

n Coarse-Grain – switches threads only on costly stalls (e.g., L2 
cache misses):
n Advantages – thread switching is much less likely to slow down 

the execution of an individual thread.
n Disadvantage – limited, due to pipeline start-up costs, in its 

ability to overcome throughput loss:
n Pipeline must be flushed and refilled on thread switches.



7

Types of Multithreading
n Coarse-grain multithreading (CGMT).
n Fine-grain multithreading (FGMT).
n Simultaneous multithreading (SMT).

Fine-Grain (FGMT)

n Significant sacrifice to single thread performance.
n Tolerates latencies (L2 misses, mis-predicted branches).
n Thread scheduling:

n Round-robin thread switching after each cycle.
n Pipeline partitioning:

n No flushing, dynamic.
n Multiple threads in pipeline at once.

n Lots of threads needed.
n Finding a home in GPU’s.



8

Software Implementation

§ From a software aspect - synchronization of objects is 
often required when implementing software apps with 
multi-threading.

§ These objects are used to protect memory from being 
modified by multiple threads at the same time.

§ A mutex is one such object. It is a lock which can be 
locked by a thread, and any successive attempt to lock it 
by another thread or by the same thread, will be blocked 
until the mutex is unlocked, thus keeping an item from 
being accessed more than once at the same time.

Conclusions

n Hardware support for multi-, hyper-, and simultaneous 
threading exists in all major processors.

n Operating system must support multi-threading.
n Types of multi-threading:

n Coarse-grain.
n Fine-grain.
n Simultaneous.

n Individual latencies are sacrificed for the good of the 
entire program (or process).


