
 Historical Perspective and Further
Reading

Th is section surveys the history of instruction set architectures over time, and we give
a short history of programming languages and compilers. ISAs include accumulator
architectures, general-purpose register architectures, stack architectures, and a
brief history of ARM and the x86. We also review the controversial subjects of
high-level-language computer architectures and reduced instruction set computer
architectures. Th e history of programming languages includes Fortran, Lisp, Algol,
C, Cobol, Pascal, Simula, Smalltalk, C��, and Java, and the history of compilers
includes the key milestones and the pioneers who achieved them.

Accumulator Architectures
Hardware was precious in the earliest stored-program computers. Consequently,
computer pioneers could not aff ord the number of registers found in today’s
architectures. In fact, these architectures had a single register for arithmetic
instructions. Since all operations would accumulate in a single register, it was
called the accumulator, and this style of instruction set is given the same name.
For example, EDSAC in 1949 had a single accumulator.

Th e three-operand format of MIPS suggests that a single register is at least two
registers shy of our needs. Having the accumulator as both a source operand and
the destination of the operation fi lls part of the shortfall, but it still leaves us one
operand short. Th at fi nal operand is found in memory. Accumulator architectures
have the memory-based operand-addressing mode suggested earlier. It follows that
the add instruction of an accumulator instruction set would look like this:

add 200

Th is instruction means add the accumulator to the word in memory at address 200
and place the sum back into the accumulator. No registers are specifi ed because
the accumulator is known to be both a source and a destination of the operation.

Th e next step in the evolution of instruction sets was the addition of registers
dedicated to specifi c operations. Hence, registers might be included to act as indices
for array references in data transfer instructions, to act as separate accumulators for
multiply or divide instructions, and to serve as the top-of-stack pointer. Perhaps
the best-known example of this style of instruction set is found in the Intel 8086,
the computer at the core of the IBM Personal Computer. Th is style of instruction
set is labeled extended accumulator, dedicated register, or special-purpose register.
Like the single-register accumulator architectures, one operand may be in memory
for arithmetic instructions. Like the MIPS architecture, however, there are also
instructions where all the operands are registers.

Eric Raymond, Th e New
Hacker’s Dictionary,
1991

accumulator: Archaic
term for register. On-line
use of it as a synonym for
“register” is a fairly reliable
indication that the user
has been around quite a
while.

5.92.21

 2.21 Historical Perspective and Further Reading 2.21-3

General-Purpose Register Architectures
Th e generalization of the dedicated-register architecture allows all the registers
to be used for any purpose, hence the name general-purpose register. MIPS is an
example of a general-purpose register architecture. Th is style of instruction set
may be further divided into those that allow one operand to be in memory (as
found in accumulator architectures), called a register-memory architecture, and
those that demand that operands always be in registers, called either a load-store
or a register-register architecture. Figure 2.21.1 shows a history of the number of
registers in some popular computers.

Th e fi rst load-store architecture was the CDC 6600 in 1963, considered by many
to be the fi rst supercomputer. ARM and MIPS are more recent examples of a load-
store architecture.

load-store architecture
Also called register-
register architecture. An
instruction set architecture
in which all operations
are between registers and
data memory may only
be accessed via loads or
stores.

Machine
Number of

 general-purpose registers Architectural style Year

EDSAC 0 9491rotalumuccA1

IBM 701 0 3591rotalumuccA1

CDC 6600 0 3691erots-daoL8

4691yromem-retsigeR61063 MBI

DEC PDP-8 0 5691rotalumuccA1

DEC PDP-11 0 0791yromem-retsigeR8

Intel 8008 0 2791rotalumuccA1

Motorola 6800 0 4791rotalumuccA2

7791yromem-yromem ,yromem-retsigeR61XAV CED

Intel 8086 01 Extended accumulator 1978

0891yromem-retsigeR6100086 alorotoM

Intel 80386 0 5891yromem-retsigeR8

5891erots-daoL61MRA

5891erots-daoL23SPIM

6891erots-daoL23CSIR-AP PH

7891erots-daoL23CRAPS

2991erots-daoL23CPrewoP

2991erots-daoL23ahplA CED

1002erots-daoL82146-AI letnI/PH

3002yromem-retsigeR61)46TME(46DMA

FIGURE 2.21.1 The number of general-purpose registers in popular architectures over
the years.

Th e 80386 is Intel’s attempt to transform the 8086 into a general-purpose register-
memory instruction set. Perhaps the best-known register-memory instruction set
is the IBM 360 architecture, fi rst announced in 1964. Th is instruction set is still at
the core of IBM’s mainframe computers—responsible for a large part of the business

2.21-4 2.21 Historical Perspective and Further Reading

of the largest computer company in the world. Register-memory architectures were
the most popular in the 1960s and the fi rst half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one
step further in 1977. It allowed an instruction to use any combination of registers
and memory operands. A style of architecture in which all operands can be in
memory is called memory-memory. (In truth the VAX instruction set, like almost
all other instruction sets since the IBM 360, is a hybrid, since it also has general-
purpose registers.)

Although MIPS has a single add instruction with 32-bit operands, the Intel x86
has many versions of a 32-bit add to specify whether an operand is in memory or
is in a register. In addition, the memory operand can be accessed with more than
seven addressing modes. Th is combination of address modes and register-memory
operands means that there are dozens of variants of an x86 add instruction. Clearly,
this variability makes x86 implementations more challenging.

Compact Code and Stack Architectures
When memory is scarce, it is also important to keep programs small, so architectures
like the Intel x86, IBM 360, and VAX had variable-length instructions, both to
match the varying operand specifi cations and to minimize code size. Intel x86
instructions are from 1 to 17 bytes long; IBM 360 instructions are 2, 4, or 6 bytes
long; and VAX instruction lengths are anywhere from 1 to 54 bytes. If instruction
memory space becomes precious once again, such techniques could return to
popularity.

In the 1960s, a few companies followed a radical approach to instruction sets.
In the belief that it was too hard for compilers to utilize registers eff ectively, these
companies abandoned registers altogether! Instruction sets were based on a
stack model of execution, like that found in the older Hewlett-Packard handheld
calculators. Operands are pushed on the stack from memory or popped off the
stack into memory. Operations take their operands from the stack and then place
the result back onto the stack. In addition to simplifying compilers by eliminating
register allocation, stack architectures lent themselves to compact instruction
encoding, thereby removing memory size as an excuse not to program in high-
level languages.

Memory space was perceived to be precious again for Java, both because
memory space is limited to keep costs low in embedded applications and because
programs may be downloaded over the Internet or phone lines as Java applets, and
smaller programs take less time to transmit. Hence, compact instruction encoding
was desirable for Java bytecodes.

 2.21 Historical Perspective and Further Reading 2.21-5

High-Level-Language Computer Architectures
In the 1960s, systems soft ware was rarely written in high-level languages. For example,
virtually every commercial operating system before UNIX was programmed in
assembly language, and more recently even OS/2 was originally programmed at
that same low level. Some people blamed the code density of the instruction sets,
rather than the programming languages and the compiler technology.

Hence, an architecture design philosophy called high-level-language computer
architecture was advocated, with the goal of making the hardware more like the
programming languages. More effi cient programming languages and compilers,
plus expanding memory, doomed this movement to a historical footnote. Th e
Burroughs B5000 was the commercial fountainhead of this philosophy, but today
there is no signifi cant commercial descendant of this 1960s radical.

Reduced Instruction Set Computer Architectures
Th is language-oriented design philosophy was replaced in the 1980s by RISC
(reduced instruction set computer). Improvements in programming languages,
compiler technology, and memory cost meant that less programming was being
done at the assembly level, so instruction sets could be measured by how well
compilers used them, as opposed to how well assembly language programmers
used them.

Virtually all new instruction sets since 1982 have followed this RISC philosophy
of fi xed instruction lengths, load-store instruction sets, limited addressing modes,
and limited operations. ARM, Hitachi SH, IBM PowerPC, MIPS, and Sun SPARC
are all examples of RISC architectures.

A Brief History of the ARM
ARM started as the processor for the Acorn computer, hence its original name of
Acorn RISC Machine. Its architecture was infl uenced by the Berkeley RISC papers.

One of the most important early applications was emulation of the AM 6502,
a 16-bit microprocessor. Th is emulation was to provide most of the soft ware for
the Acorn computer. As the 6502 had a variable length instruction set that was
a multiple of bytes, 6502 emulation helps explain the emphasis on shift ing and
masking in the ARM instruction set.

Its popularity as a low-power embedded computer began with its selection as
the processor for the ill-fated Apple Newton personal digital assistant. Although
the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility to
ARM, and it subsequently caught on in several markets, including cell phones.
Unlike the Newton experience, the extraordinary success of cell phones explains
why nine billion ARM processors were shipped in 2012.

One of the major events in ARM’s history is the 64-bit address extension called
version 8. ARM took the opportunity to redesign and simplify the instruction set
to make it look much more like MIPS than like earlier ARM versions.

2.21-6 2.21 Historical Perspective and Further Reading

A Brief History of the x86
Th e ancestors of the x86 were the fi rst microprocessors, produced starting in 1972.
Th e Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator-style
architectures. Morse et al. [1980] describe the evolution of the 8086 from the
8080 in the late 1970s as an attempt to provide a 16-bit architecture with better
throughput. At that time, almost all programming for microprocessors was done
in assembly language—both memory and compilers were in short supply. Intel
wanted to keep its base of 8080 users, so the 8086 was designed to be “compatible”
with the 8080. Th e 8086 was never object-code compatible with the 8080, but the
architectures were close enough that translation of assembly language programs
could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. Th ey chose the 8-bit version to reduce the
cost of the architecture. Th is choice, together with the tremendous success of the
IBM PC, has made the 8086 architecture ubiquitous. Th e success of the IBM PC was
due in part because IBM opened the architecture of the PC and enabled the PC-
clone industry to fl ourish. As discussed in Section 2.17, the 80286, 80386, 80486,
Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 have extended the
architecture and provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as
pervasive as the PC, partly because Apple did not allow Mac clones based on the
68000, and the 68000 did not acquire the same soft ware following that which
the 8086 enjoys. Th e Motorola 68000 may have been more signifi cant technically
than the 8086, but the impact of IBM’s selection and open architecture strategy
dominated the technical advantages of the 68000 in the market.

Some argue that the inelegance of the x86 instruction set is unavoidable, the
price that must be paid for rampant success by any architecture. We reject that
notion. Obviously, no successful architecture can jettison features that were
added in previous implementations, and over time, some features may be seen as
undesirable. Th e awkwardness of the x86 begins at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions found in the
8087, 80286, 80386, MMX, SSE, SSE2, SSE3, SSE4, AMD64 (EM64T), and AVX.

A counterexample is the IBM 360/370 architecture, which is much older than
the x86. It dominates the mainframe market just as the x86 dominates the PC
market. Due undoubtedly to a better base and more compatible enhancements,
this instruction set makes much more sense than the x86 50 years aft er its fi rst
implementation.

Extending the x86 to 64-bit addressing means the architecture could last for
several more decades. Instruction set anthropologists of the future will peel off
layer aft er layer from such architectures until they uncover artifacts from the fi rst
microprocessor. Given such a fi nd, how will they judge today’s computer architecture?

 2.21 Historical Perspective and Further Reading 2.21-7

A Brief History of Programming Languages
In 1954, John Backus led a team at IBM to create a more natural notation for scientifi c
programming. Th e goal of Fortran, for “FORmula TRANslator,” was to reduce the
time to develop programs. Fortran included many ideas found in programming
languages today, including assignment statements, expressions, typed variables,
loops, and arrays. Th e development of the language and the compiler went hand
in hand. Th is language became a standard that has evolved over time to improve
programmer productivity and program portability. Th e evolutionary steps are
Fortran I, II, IV, 77, and 90.

Fortran was developed for IBM’s second commercial computer, the 704, which
was also the cradle of another important programming language: Lisp. John
McCarthy invented the “LISt Processing” language in 1958. Its mantra is that
programming can be considered as manipulating lists, so the language contains
operations to follow links and to compose new lists from old ones. Th is list notation
is used for the code as well as the data, so modifying or composing Lisp programs is
common. Th e big contribution was dynamic data structures and, hence, pointers.
Given that its inventor was a pioneer in artifi cial intelligence, Lisp became popular
in the AI community. Lisp has no type declarations, and Lisp traditionally reclaims
storage automatically via built-in garbage collection. Lisp was originally interpreted,
although compilers were later developed for it.

Fortran inspired the international community to invent a programming language
that was more natural to express algorithms than Fortran, with less emphasis on
coding. Th is language became Algol, for “ALGOrithmic Language.” Like Fortran,
it included type declarations, but it added recursive procedure calls, nested if-then-
else statements, while loops, begin-end statements to structure code, and call-by-
name. Algol-60 became the classic language for academics to teach programming
in the 1960s.

Although engineers, AI researchers, and computer scientists had their own
programming languages, the same could not be said for business data processing.
Cobol, for “COmmon Business-Oriented Language,” was developed as a standard for
this purpose about the same time as Algol-60. Cobol was created to be easy to read,
so it follows English vocabulary and punctuation. It added records to programming
languages, and separated description of data from description of code.

Niklaus Wirth was a member of the Algol-68 committee, which was supposed
to update Algol-60. He was bothered by the complexity of the result, and so he
wrote a minority report to show that a programming language could combine
the algorithmic power of Algol-60 with the record structure from Cobol and be
simple to understand, simple to implement, yet still powerful. Th is minority report
became Pascal. It was fi rst implemented with an interpreter and a set of Pascal
bytecodes. Th e ease of implementation led to its being widely deployed, much

2.21-8 2.21 Historical Perspective and Further Reading

more than Algol-68, and it soon replaced Algol-60 as the most popular language
for academics to teach programming.

In the same period, Dennis Ritchie invented the C programming language to
use in building UNIX. Its inventors say it is not a “very high level” programming
language or a big one, and it is not aimed at a particular application. Given its
birthplace, it was very good at systems programming, and the UNIX operating
system and C compiler were written in C. UNIX’s popularity helped spur C’s
popularity.

Th e concept of object orientation is fi rst captured in Simula-67, a simulation
language successor to Algol-60. Invented by Ole-Johan Dahl and Kristen Nygaard
at the University of Oslo in 1967, it introduced objects, classes, and inheritance.

Object orientation proved to be a powerful idea. It led Alan Kay and others at
Xerox Palo Alto Research Center to invent Smalltalk in the 1970s. Smalltalk-80
married the typeless variables and garbage collection from Lisp and the object
orientation of Simula-67. It relied on interpretation that was defi ned by a Smalltalk
virtual machine with a Smalltalk bytecode instruction set. Kay and his colleagues
argued that processors were getting faster, and that we must eventually be willing
to sacrifi ce some performance to improve program development. Another example
was CLU, which demonstrated that an object-oriented language could be defi ned
that allowed compile-time type checking. Simula-67 also inspired Bjarne Stroustrup
of Bell Labs to develop an object-oriented version of C called C�� in the 1980s.
C�� became widely used in industry.

Dissatisfi ed with C��, a group at Sun led by James Gosling invented Oak in the
early 1990s. It was invented as an object-oriented C dialect for embedded devices
as part of a major Sun project. To make it portable, it was interpreted and had its
own virtual machine and bytecode instruction set. Since it was a new language,
it had a more elegant object-oriented design than C�� and was much easier to
learn and compile than Smalltalk-80. Since Sun’s embedded project failed, we
might never have heard of it had someone not made the connection between Oak
and programmable browsers for the World Wide Web. It was rechristened Java,
and in 1995, Netscape announced that it would be shipping with its browser. It
soon became extraordinarily popular. Java has the rare distinction of becoming
the standard language for new business data processing applications and the most
popular language for academics to teach programming. Java and languages like
it encourage reuse of code, and hence programmers make heavy use of libraries,
whereas in the past they were more likely to write everything from scratch.

 2.21 Historical Perspective and Further Reading 2.21-9

A Brief History of Compilers
Backus and his group were very concerned that Fortran would be unsuccessful
if skeptics found examples where the Fortran version ran at half the speed of the
equivalent assembly language program. Th eir success with one of the fi rst compilers
created a beachhead that many others followed.

Early compilers were ad hoc programs that performed the steps described in
Section 2.15 online. Th ese ad hoc approaches were replaced with a solid theoretical
foundation for each of these steps. Each time the theory was established, a tool was
created based on that theory that automated the creation of that step.

Th e theoretical roots underlying scanning and parsing derive from automata
theory, and the relationship between languages and automata was known early.
Th e scanning task corresponds to recognition of a language accepted by a fi nite-
state automata, and parsing corresponds to recognition of a language by a push-
down automata (basically an automata with a stack). Languages are described by
grammars, which are a set of rules that tell how any legal program can be generated.

Th e scanning pass of a compiler was well understood early, but parsing is harder.
Th e earliest parsers use precedence techniques, which derived from the structure
of arithmetic statements, and were then generalized. Th e great breakthrough in
modern parsing was made by Donald Knuth in the invention of LR-parsing, which
codifi ed the two key steps in the parsing technique, pushing a token on the stack
or reducing a set of tokens on the stack using a grammar rule. Th e strong theory
formulation for scanning and parsing led to the development of automated tools
for compiler constructions, such as lex and yacc, the tools developed as part of
UNIX.

Optimizations occurred in many compilers, and it is harder to determine the
fi rst examples in most cases. However, Victor Vyssotsky did the fi rst papers on data
fl ow analysis in 1963, and William McKeeman is generally credited with the fi rst
peephole optimizer in 1965. Th e group at IBM, including John Cocke and Fran
Allan, developed many of the early optimization concepts, as well as defi ning and
extending the concepts of fl ow analysis. Important contributions were also made
by Al Aho and Jeff Ullman.

One of the biggest challenges for optimization was register allocation. It was so
diffi cult that some architects used stack architectures just to avoid the problem.
Th e breakthrough came when researchers working on compilers for the 801, an
early RISC architecture, recognized that coloring a graph with a minimum number
of colors was equivalent to allocating a fi xed number of registers to the unlimited
number of virtual registers used in intermediate forms.

Compilers also played an important role in the open source movement. Richard
Stallman’s self-appointed mission was to make a public domain version of UNIX.
He built the GNU C Compiler (gcc) as an open source compiler in 1987. It soon
was ported to many architectures, and is used in many systems today.

2.21-10 2.21 Historical Perspective and Further Reading

Further Reading

Bayko, J. [1996]. “Great microprocessors of the past and present,” search for it on the www.jbayko.sasktel
website.net/cpu.html

A personal view of the history of both representative and unusual microprocessors, from the Intel 4004 to the
Patriot Scientifi c ShBoom!

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliff s, NJ.

Th is book describes the MIPS architecture in greater detail than Appendix A.

Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture: Th e VAX, Digital Press, Boston.

Th is book concentrates on the VAX, but also includes descriptions of the Intel 8086, IBM 360, and CDC 6600.

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080 to 8086,” Computer
13:10 (October).

Th e architecture history of the Intel from the 4004 to the 8086, according to the people who participated in the
designs.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York.

Th e Motorola 6800 is the main focus of the book, but it covers the Intel 8086, Motorola 6809, TI 9900, and Zilog
Z8000.

