
  Historical Perspective and Further 
Reading

Th is section surveys the history of instruction set architectures over time, and we give 
a short history of programming languages and compilers. ISAs include accumulator 
architectures, general-purpose register architectures, stack architectures, and a 
brief history of ARM and the x86. We also review the controversial subjects of 
high-level-language computer architectures and reduced instruction set computer 
architectures. Th e history of programming languages includes Fortran, Lisp, Algol, 
C, Cobol, Pascal, Simula, Smalltalk, C��, and Java, and the history of compilers 
includes the key milestones and the pioneers who achieved them.

Accumulator Architectures
Hardware was precious in the earliest stored-program computers. Consequently, 
computer pioneers could not aff ord the number of registers found in today’s 
architectures. In fact, these architectures had a single register for arithmetic 
instructions. Since all operations would accumulate in a single register, it was 
called the accumulator, and this style of instruction set is given the same name. 
For example, EDSAC in 1949 had a single accumulator.

Th e three-operand format of MIPS suggests that a single register is at least two 
registers shy of our needs. Having the accumulator as both a source operand and 
the destination of the operation fi lls part of the shortfall, but it still leaves us one 
operand short. Th at fi nal operand is found in memory. Accumulator architectures 
have the memory-based operand-addressing mode suggested earlier. It follows that 
the add instruction of an accumulator instruction set would look like this:

add   200

Th is instruction means add the accumulator to the word in memory at address 200 
and place the sum back into the accumulator. No registers are specifi ed because 
the accumulator is known to be both a source and a destination of the operation.

Th e next step in the evolution of instruction sets was the addition of registers 
dedicated to specifi c operations. Hence, registers might be included to act as indices 
for array references in data transfer instructions, to act as separate accumulators for 
multiply or divide instructions, and to serve as the top-of-stack pointer. Perhaps 
the best-known example of this style of instruction set is found in the Intel 8086, 
the computer at the core of the IBM Personal Computer. Th is style of instruction 
set is labeled extended accumulator, dedicated register, or special-purpose register. 
Like the single-register accumulator architectures, one operand may be in memory 
for arithmetic instructions. Like the MIPS architecture, however, there are also 
instructions where all the operands are registers.

Eric Raymond, Th e New 
Hacker’s Dictionary, 
1991

accumulator: Archaic 
term for register. On-line 
use of it as a synonym for 
“register” is a fairly reliable 
indication that the user 
has been around quite a 
while.
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General-Purpose Register Architectures
Th e generalization of the dedicated-register architecture allows all the registers 
to be used for any purpose, hence the name general-purpose register. MIPS is an 
example of a general-purpose register architecture. Th is style of instruction set 
may be further divided into those that allow one operand to be in memory (as 
found in accumulator architectures), called a register-memory architecture, and 
those that demand that operands always be in registers, called either a load-store 
or a register-register architecture. Figure 2.21.1 shows a history of the number of 
registers in some popular computers.

Th e fi rst load-store architecture was the CDC 6600 in 1963, considered by many 
to be the fi rst supercomputer. ARM and MIPS are more recent examples of a load-
store architecture.

load-store architecture 
Also called register-
register architecture. An 
instruction set architecture 
in which all operations 
are between registers and 
data memory may only 
be accessed via loads or 
stores.

Machine
Number of

 general-purpose registers Architectural style Year

EDSAC 0 9491rotalumuccA1

IBM 701 0 3591rotalumuccA1

CDC 6600 0 3691erots-daoL8

4691yromem-retsigeR61063 MBI

DEC PDP-8 0 5691rotalumuccA1

DEC PDP-11 0 0791yromem-retsigeR8

Intel 8008 0 2791rotalumuccA1

Motorola 6800 0 4791rotalumuccA2

7791yromem-yromem ,yromem-retsigeR61XAV CED

Intel 8086 01 Extended accumulator 1978

0891yromem-retsigeR6100086 alorotoM

Intel 80386 0 5891yromem-retsigeR8

5891erots-daoL61MRA

5891erots-daoL23SPIM

6891erots-daoL23CSIR-AP PH

7891erots-daoL23CRAPS

2991erots-daoL23CPrewoP

2991erots-daoL23ahplA CED

1002erots-daoL82146-AI letnI/PH

3002yromem-retsigeR61)46TME( 46DMA

FIGURE 2.21.1 The number of general-purpose registers in popular architectures over 
the years.

Th e 80386 is Intel’s attempt to transform the 8086 into a general-purpose register-
memory instruction set. Perhaps the best-known register-memory instruction set 
is the IBM 360 architecture, fi rst announced in 1964. Th is instruction set is still at 
the core of IBM’s mainframe computers—responsible for a large part of the business 
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of the largest computer company in the world. Register-memory architectures were 
the most popular in the 1960s and the fi rst half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one 
step further in 1977. It allowed an instruction to use any combination of registers 
and memory operands. A style of architecture in which all operands can be in 
memory is called memory-memory. (In truth the VAX instruction set, like almost 
all other instruction sets since the IBM 360, is a hybrid, since it also has general-
purpose registers.)

Although MIPS has a single add instruction with 32-bit operands, the Intel x86 
has many versions of a 32-bit add to specify whether an operand is in memory or 
is in a register. In addition, the memory operand can be accessed with more than 
seven addressing modes. Th is combination of address modes and register-memory 
operands means that there are dozens of variants of an x86 add instruction. Clearly, 
this variability makes x86 implementations more challenging.

Compact Code and Stack Architectures
When memory is scarce, it is also important to keep programs small, so architectures 
like the Intel x86, IBM 360, and VAX had variable-length instructions, both to 
match the varying operand specifi cations and to minimize code size. Intel x86 
instructions are from 1 to 17 bytes long; IBM 360 instructions are 2, 4, or 6 bytes 
long; and VAX instruction lengths are anywhere from 1 to 54 bytes. If instruction 
memory space becomes precious once again, such techniques could return to 
popularity.

In the 1960s, a few companies followed a radical approach to instruction sets. 
In the belief that it was too hard for compilers to utilize registers eff ectively, these 
companies abandoned registers altogether! Instruction sets were based on a 
stack model of execution, like that found in the older Hewlett-Packard handheld 
calculators. Operands are pushed on the stack from memory or popped off  the 
stack into memory. Operations take their operands from the stack and then place 
the result back onto the stack. In addition to simplifying compilers by eliminating 
register allocation, stack architectures lent themselves to compact instruction 
encoding, thereby removing memory size as an excuse not to program in high-
level languages.

Memory space was perceived to be precious again for Java, both because 
memory space is limited to keep costs low in embedded applications and because 
programs may be downloaded over the Internet or phone lines as Java applets, and 
smaller programs take less time to transmit. Hence, compact instruction encoding 
was desirable for Java bytecodes.
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High-Level-Language Computer Architectures
In the 1960s, systems soft ware was rarely written in high-level languages. For example, 
virtually every commercial operating system before UNIX was programmed in 
assembly language, and more recently even OS/2 was originally programmed at 
that same low level. Some people blamed the code density of the instruction sets, 
rather than the programming languages and the compiler technology.

Hence, an architecture design philosophy called high-level-language computer 
architecture was advocated, with the goal of making the hardware more like the 
programming languages. More effi  cient programming languages and compilers, 
plus expanding memory, doomed this movement to a historical footnote. Th e 
Burroughs B5000 was the commercial fountainhead of this philosophy, but today 
there is no signifi cant commercial descendant of this 1960s radical.

Reduced Instruction Set Computer Architectures
Th is language-oriented design philosophy was replaced in the 1980s by RISC 
(reduced instruction set computer). Improvements in programming languages, 
compiler technology, and memory cost meant that less programming was being 
done at the assembly level, so instruction sets could be measured by how well 
compilers used them, as opposed to how well assembly language programmers 
used them.

Virtually all new instruction sets since 1982 have followed this RISC philosophy 
of fi xed instruction lengths, load-store instruction sets, limited addressing modes, 
and limited operations. ARM, Hitachi SH, IBM PowerPC, MIPS, and Sun SPARC 
are all examples of RISC architectures.

A Brief History of the ARM
ARM started as the processor for the Acorn computer, hence its original name of 
Acorn RISC Machine. Its architecture was infl uenced by the Berkeley RISC papers.

One of the most important early applications was emulation of the AM 6502, 
a 16-bit microprocessor. Th is emulation was to provide most of the soft ware for 
the Acorn computer. As the 6502 had a variable length instruction set that was 
a multiple of bytes, 6502 emulation helps explain the emphasis on shift ing and 
masking in the ARM instruction set.

Its popularity as a low-power embedded computer began with its selection as 
the processor for the ill-fated Apple Newton personal digital assistant. Although 
the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility to 
ARM, and it subsequently caught on in several markets, including cell phones. 
Unlike the Newton experience, the extraordinary success of cell phones explains 
why nine billion ARM processors were shipped in 2012.

One of the major events in ARM’s history is the 64-bit address extension called 
version 8. ARM took the opportunity to redesign and simplify the instruction set  
to make it look much more like MIPS than like earlier ARM versions.



2.21-6 2.21 Historical Perspective and Further Reading

A Brief History of the x86
Th e ancestors of the x86 were the fi rst microprocessors, produced starting in 1972. 
Th e Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator-style 
architectures. Morse et al. [1980] describe the evolution of the 8086 from the 
8080 in the late 1970s as an attempt to provide a 16-bit architecture with better 
throughput. At that time, almost all programming for microprocessors was done 
in assembly language—both memory and compilers were in short supply. Intel 
wanted to keep its base of 8080 users, so the 8086 was designed to be “compatible” 
with the 8080. Th e 8086 was never object-code compatible with the 8080, but the 
architectures were close enough that translation of assembly language programs 
could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus, 
called the 8088, for use in the IBM PC. Th ey chose the 8-bit version to reduce the 
cost of the architecture. Th is choice, together with the tremendous success of the 
IBM PC, has made the 8086 architecture ubiquitous. Th e success of the IBM PC was 
due in part because IBM opened the architecture of the PC and enabled the PC-
clone industry to fl ourish. As discussed in Section 2.17, the 80286, 80386, 80486, 
Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 have extended the 
architecture and provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as 
pervasive as the PC, partly because Apple did not allow Mac clones based on the 
68000, and the 68000 did not acquire the same soft ware following that which 
the 8086 enjoys. Th e Motorola 68000 may have been more signifi cant technically 
than the 8086, but the impact of IBM’s selection and open architecture strategy 
dominated the technical advantages of the 68000 in the market.

Some argue that the inelegance of the x86 instruction set is unavoidable, the 
price that must be paid for rampant success by any architecture. We reject that 
notion. Obviously, no successful architecture can jettison features that were 
added in previous implementations, and over time, some features may be seen as 
undesirable. Th e awkwardness of the x86 begins at its core with the 8086 instruction 
set and was exacerbated by the architecturally inconsistent expansions found in the 
8087, 80286, 80386, MMX, SSE, SSE2, SSE3, SSE4, AMD64 (EM64T), and AVX.

A counterexample is the IBM 360/370 architecture, which is much older than 
the x86. It dominates the mainframe market just as the x86 dominates the PC 
market. Due undoubtedly to a better base and more compatible enhancements, 
this instruction set makes much more sense than the x86 50 years aft er its fi rst 
implementation.

Extending the x86 to 64-bit addressing means the architecture could last for 
several more decades. Instruction set anthropologists of the future will peel off  
layer aft er layer from such architectures until they uncover artifacts from the fi rst 
microprocessor. Given such a fi nd, how will they judge today’s computer architecture?
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A Brief History of Programming Languages
In 1954, John Backus led a team at IBM to create a more natural notation for scientifi c 
programming. Th e goal of Fortran, for “FORmula TRANslator,” was to reduce the 
time to develop programs. Fortran included many ideas found in programming 
languages today, including assignment statements, expressions, typed variables, 
loops, and arrays. Th e development of the language and the compiler went hand 
in hand. Th is language became a standard that has evolved over time to improve 
programmer productivity and program portability. Th e evolutionary steps are 
Fortran I, II, IV, 77, and 90.

Fortran was developed for IBM’s second commercial computer, the 704, which 
was also the cradle of another important programming language: Lisp. John 
McCarthy invented the “LISt Processing” language in 1958. Its mantra is that 
programming can be considered as manipulating lists, so the language contains 
operations to follow links and to compose new lists from old ones. Th is list notation 
is used for the code as well as the data, so modifying or composing Lisp programs is 
common. Th e big contribution was dynamic data structures and, hence, pointers. 
Given that its inventor was a pioneer in artifi cial intelligence, Lisp became popular 
in the AI community. Lisp has no type declarations, and Lisp traditionally reclaims 
storage automatically via built-in garbage collection. Lisp was originally interpreted, 
although compilers were later developed for it.

Fortran inspired the international community to invent a programming language 
that was more natural to express algorithms than Fortran, with less emphasis on 
coding. Th is language became Algol, for “ALGOrithmic Language.” Like Fortran, 
it included type declarations, but it added recursive procedure calls, nested if-then-
else statements, while loops, begin-end statements to structure code, and call-by-
name. Algol-60 became the classic language for academics to teach programming 
in the 1960s.

Although engineers, AI researchers, and computer scientists had their own 
programming languages, the same could not be said for business data processing. 
Cobol, for “COmmon Business-Oriented Language,” was developed as a standard for 
this purpose about the same time as Algol-60. Cobol was created to be easy to read, 
so it follows English vocabulary and punctuation. It added records to programming 
languages, and separated description of data from description of code.

Niklaus Wirth was a member of the Algol-68 committee, which was supposed 
to update Algol-60. He was bothered by the complexity of the result, and so he 
wrote a minority report to show that a programming language could combine 
the algorithmic power of Algol-60 with the record structure from Cobol and be 
simple to understand, simple to implement, yet still powerful. Th is minority report 
became Pascal. It was fi rst implemented with an interpreter and a set of Pascal 
bytecodes. Th e ease of implementation led to its being widely deployed, much 
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more than Algol-68, and it soon replaced Algol-60 as the most popular language 
for academics to teach programming.

In the same period, Dennis Ritchie invented the C programming language to 
use in building UNIX. Its inventors say it is not a “very high level” programming 
language or a big one, and it is not aimed at a particular application. Given its 
birthplace, it was very good at systems programming, and the UNIX operating 
system and C compiler were written in C. UNIX’s popularity helped spur C’s 
popularity.

Th e concept of object orientation is fi rst captured in Simula-67, a simulation 
language successor to Algol-60. Invented by Ole-Johan Dahl and Kristen Nygaard 
at the University of Oslo in 1967, it introduced objects, classes, and inheritance.

Object orientation proved to be a powerful idea. It led Alan Kay and others at 
Xerox Palo Alto Research Center to invent Smalltalk in the 1970s. Smalltalk-80 
married the typeless variables and garbage collection from Lisp and the object 
orientation of Simula-67. It relied on interpretation that was defi ned by a Smalltalk 
virtual machine with a Smalltalk bytecode instruction set. Kay and his colleagues 
argued that processors were getting faster, and that we must eventually be willing 
to sacrifi ce some performance to improve program development. Another example 
was CLU, which demonstrated that an object-oriented language could be defi ned 
that allowed compile-time type checking. Simula-67 also inspired Bjarne Stroustrup 
of Bell Labs to develop an object-oriented version of C called C�� in the 1980s. 
C�� became widely used in industry.

Dissatisfi ed with C��, a group at Sun led by James Gosling invented Oak in the 
early 1990s. It was invented as an object-oriented C dialect for embedded devices 
as part of a major Sun project. To make it portable, it was interpreted and had its 
own virtual machine and bytecode instruction set. Since it was a new language, 
it had a more elegant object-oriented design than C�� and was much easier to 
learn and compile than Smalltalk-80. Since Sun’s embedded project failed, we 
might never have heard of it had someone not made the connection between Oak 
and programmable browsers for the World Wide Web. It was rechristened Java, 
and in 1995, Netscape announced that it would be shipping with its browser. It 
soon became extraordinarily popular. Java has the rare distinction of becoming 
the standard language for new business data processing applications and the most 
popular language for academics to teach programming. Java and languages like 
it encourage reuse of code, and hence programmers make heavy use of libraries, 
whereas in the past they were more likely to write everything from scratch.
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A Brief History of Compilers
Backus and his group were very concerned that Fortran would be unsuccessful 
if skeptics found examples where the Fortran version ran at half the speed of the 
equivalent assembly language program. Th eir success with one of the fi rst compilers 
created a beachhead that many others followed.

Early compilers were ad hoc programs that performed the steps described in 
Section 2.15 online. Th ese ad hoc approaches were replaced with a solid theoretical 
foundation for each of these steps. Each time the theory was established, a tool was 
created based on that theory that automated the creation of that step.

Th e theoretical roots underlying scanning and parsing derive from automata 
theory, and the relationship between languages and automata was known early. 
Th e scanning task corresponds to recognition of a language accepted by a fi nite-
state automata, and parsing corresponds to recognition of a language by a push-
down automata (basically an automata with a stack). Languages are described by 
grammars, which are a set of rules that tell how any legal program can be generated.

Th e scanning pass of a compiler was well understood early, but parsing is harder. 
Th e earliest parsers use precedence techniques, which derived from the structure 
of arithmetic statements, and were then generalized. Th e great breakthrough in 
modern parsing was made by Donald Knuth in the invention of LR-parsing, which 
codifi ed the two key steps in the parsing technique, pushing a token on the stack 
or reducing a set of tokens on the stack using a grammar rule. Th e strong theory 
formulation for scanning and parsing led to the development of automated tools 
for compiler constructions, such as lex and yacc, the tools developed as part of 
UNIX.

Optimizations occurred in many compilers, and it is harder to determine the 
fi rst examples in most cases. However, Victor Vyssotsky did the fi rst papers on data 
fl ow analysis in 1963, and William McKeeman is generally credited with the fi rst 
peephole optimizer in 1965. Th e group at IBM, including John Cocke and Fran 
Allan, developed many of the early optimization concepts, as well as defi ning and 
extending the concepts of fl ow analysis. Important contributions were also made 
by Al Aho and Jeff  Ullman.

One of the biggest challenges for optimization was register allocation. It was so 
diffi  cult that some architects used stack architectures just to avoid the problem. 
Th e breakthrough came when researchers working on compilers for the 801, an 
early RISC architecture, recognized that coloring a graph with a minimum number 
of colors was equivalent to allocating a fi xed number of registers to the unlimited 
number of virtual registers used in intermediate forms.

Compilers also played an important role in the open source movement. Richard 
Stallman’s self-appointed mission was to make a public domain version of UNIX. 
He built the GNU C Compiler (gcc) as an open source compiler in 1987. It soon 
was ported to many architectures, and is used in many systems today.
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