
 Historical Perspective and Further
Reading

Th is section discusses the history of the fi rst pipelined processors, the earliest
superscalars, and the development of out-of-order and speculative techniques, as
well as important developments in the accompanying compiler technology.

It is generally agreed that one of the fi rst general-purpose pipelined computers
was Stretch, the IBM 7030 (Figure 4.16.1). Stretch followed the IBM 704 and had a
goal of being 100 times faster than the 704. Th e goals were a “stretch” of the state of
the art at that time—hence the nickname. Th e plan was to obtain a factor of 1.6 from
overlapping fetch, decode, and execute by using a four-stage pipeline. Apparently,
the rest was to come from much more hardware and faster logic. Stretch was also
a training ground for both the architects of the IBM 360, Gerrit Blaauw and Fred
Brooks, Jr., and the architect of the IBM RS/6000, John Cocke.

supercomputer: Any
machine still on the
drawing board.
Stan Kelly-Bootle, Th e
Devil’s DP Dictionary,
1981

FIGURE 4.16.1 The Stretch computer, one of the fi rst pipelined computers.

4.16

 4.16 Historical Perspective and Further Reading 4.16-3

Control Data Corporation (CDC) delivered what is considered to be the fi rst
supercomputer, the CDC 6600, in 1964 (Figure 4.16.2). Th e core instructions of
Cray’s subsequent computers have many similarities to those of the original CDC
6600. Th e CDC 6600 was unique in many ways. Th e interaction between pipelining
and instruction set design was understood, and the instruction set was kept simple
to promote pipelining. Th e CDC 6600 also used an advanced packaging technology.
James Th ornton’s book [1970] provides an excellent description of the entire
computer, from technology to architecture, and includes a foreword by Seymour
Cray. (Unfortunately, this book is currently out of print.) Jim Smith, then working at
CDC, developed the original 2-bit branch prediction scheme and explored several
techniques for enhancing instruction issue. Cray, Th ornton, and Smith have each
won the ACM Eckert-Mauchly Award (in 1989, 1994, and 1999, respectively).

Th e IBM 360/91 introduced many new concepts, including dynamic detection of
memory hazards, generalized forwarding, and reservation stations (Figure 4.16.3).
Th e approach is normally named Tomasulo’s algorithm, aft er an engineer who
worked on the project. Th e team that created the 360/91 was led by Michael Flynn,
who was given the 1992 ACM Eckert-Mauchly Award, in part for his contributions
to the IBM 360/91; in 1997, the same award went to Robert Tomasulo for his
pioneering work on out-of-order processing.

Th e internal organization of the 360/91 shares many features with the Pentium
III and Pentium 4, as well as with several other microprocessors. One major

FIGURE 4.16.2 The CDC 6600, the fi rst supercomputer.

 4.16-4 4.16 Historical Perspective and Further Reading

diff erence was that there was no branch prediction in the 360/91 and hence no
speculation. Another major diff erence was that there was no commit unit, so
once the instructions fi nished execution, they updated the registers. Out-of-order
instruction commit led to imprecise interrupts, which proved to be unpopular and
led to the commit units in dynamically scheduled pipelined processors since that
time. Although the 360/91 was not a success, its key ideas were resurrected later
and exist in some form in the majority of microprocessors of the last decade.

Improving Pipelining Effectiveness and Adding Multiple
Issue
Th e RISC processors refi ned the notion of compiler-scheduled pipelines in the
early 1980s. Th e concepts of delayed branches and delayed loads—common in
microprogramming—were extended into the high-level architecture. In fact,
the Stanford processor that led to the commercial MIPS architecture was called
“Microprocessor without Interlocked Pipelined Stages” because it was up to the
assembler or compiler to avoid data hazards.

In addition to its contribution to the development of the RISC concepts, IBM did
pioneering work on multiple issue. In the 1960s, a project called ACS was under-
way. It included multiple-instruction issue concepts and the notion of integrated
compiler and architecture design, but it never reached product stage. Th e earliest
proposal for a superscalar processor that dynamically makes issue decisions was

FIGURE 4.16.3 The IBM 360/91 pushed the state of the art in pipelined execution when
it was unveiled in 1966.

 4.16 Historical Perspective and Further Reading 4.16-5

by John Cocke; he described the key ideas in several talks in the mid-1980s and,
with Tilak Agarwala, coined the name superscalar. Th is original design was a two-
issue machine named Cheetah, which was followed by a more widely discussed
four-issue machine named America. Th e IBM Power-1 architecture, used in the
RS/6000 line, is based on these ideas, and the PowerPC is a variation of the Power-1
architecture. Cocke won the Turing Award, the highest award in computer science
and engineering, for his architecture work.

Static multiple issue, as exemplifi ed by the long instruction word (LIW) or
sometimes very long instruction word (VLIW) approaches, appeared in real designs
before the superscalar approach. In fact, the earliest multiple-issue machines
were special-purpose attached processors designed for scientifi c applications.
Culler Scientifi c and Floating Point Systems were two of the most prominent
manufacturers of such computers. Another inspiration for the use of multiple
operations per instruction came from those working on microcode compilers.
Such inspiration led to a research project at Yale led by Josh Fisher, who coined
the term VLIW. Cydrome and Multifl ow were two early companies involved in
building mini-supercomputers using processors with multiple-issue capability.
Th ese processors, built with bit-slice and multiple-chip gate array implementations,
arrived on the market at the same time as the fi rst RISC microprocessors. Despite
some promising performance on high-end scientifi c codes, the much better cost/
performance of the microprocessor-based computers doomed the fi rst generation
of VLIW computers. Bob Rau and Josh Fisher won the Eckert-Mauchly Award in
2002 and 2003, respectively, for their contributions to the development of multiple
processors and soft ware techniques to exploit ILP.

Th e very beginning of the 1990s saw the fi rst superscalar processors using
static scheduling and no speculation, including versions of the MIPS and
PowerPC architectures. Th e early 1990s also saw important research at a number
of universities, including Wisconsin, Stanford, Illinois, and Michigan, focused on
techniques for exploiting additional ILP through multiple issue with and without
speculation. Th ese research insights were used to build dynamically scheduled,
speculative processors, including the Motorola 88110, MIPS R10000, DEC Alpha
21264, PowerPC 603, and the Intel Pentium Pro, Pentium III, and Pentium 4.

In 2001, Intel introduced the IA-64 architecture and its fi rst implementation,
Itanium. Itanium represented a return to a more compiler-intensive approach that
they called EPIC. EPIC represented a considerable enhancement over the early
VLIW architectures, removing many of their drawbacks. It has had modest sales.
In 2013, the IA-64 architecture is used only in low-volume, high-end servers and is
outnumbered by x86 processors by more than 100:1.

Compiler Technology for Exploiting ILP
Successful development of processors to exploit ILP has depended on progress in
compiler technology. Th e concept of loop-unrolling was understood early, and a
number of companies and researchers—including Floating Point Systems, Cray, and

 4.16-6 4.16 Historical Perspective and Further Reading

the Stan ford MIPS project—developed compilers that made use of loop-unrolling
and pipeline scheduling to improve instruction throughput. A special purpose
processor called WARP, designed at Carnegie Mellon University, inspired the
development of soft ware pipelining, an approach that symbolically unrolls loops.

To exploit higher levels of ILP, more aggressive compiler technology was needed.
Th e VLIW project at Yale developed the concept of trace scheduling that Multi-
fl ow implemented in their compilers. Trace scheduling relies on aggressive loop
unrolling and path prediction to compile favored execution traces effi ciently. Th e
Cydrome designers created early versions of predication and support for soft ware
pipelining. Hwu at Illinois worked on extended versions of loop-unrolling, called
superblocks, and techniques for compiling with predication. Th e concepts from
Multifl ow, Cydrome, and the research group at Illinois served as the architectural
and compiler basis for the IA-64 architecture.

Further Reading

Bhandarkar, D. and D. W. Clark [1991]. “Performance from architecture: Comparing a RISC and a CISC with
similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (April), Palo Alto, CA, 310–19.

A quantitative comparison of RISC and CISC written by scholars who argued for CISCs as well as built them;
they conclude that MIPS is between 2 and 4 times faster than a VAX built with similar technology, with a mean
of 2.7.

Fisher, J. A. and B. R. Rau [1993]. Journal of Supercomputing (January), Kluwer.

Th is entire issue is devoted to the topic of exploiting ILP. It contains papers on both the architecture and soft ware
and is a wonderful source for further references.

Hennessy, J. L. and D. A. Patterson [2001]. Computer Architecture: A Quantitative Approach, fourth edition,
Morgan Kaufmann, San Francisco.

Chapter 2 and Appendix A go into considerably more detail about pipelined processors (almost 200 pages),
including superscalar processors and VLIW processors. Appendix G describes Itanium.

Jouppi, N. P. and D. W. Wall [1989]. “Available instruction-level parallelism for superscalar and superpipelined
processors,” Proc. Th ird Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, 272–82.

A comparison of deeply pipelined (also called superpipelined) and superscalar systems.

Kogge, P. M. [1981]. Th e Architecture of Pipelined Computers, McGraw-Hill, New York.

A formal text on pipelined control, with emphasis on underlying principles.

Russell, R. M. [1978]. “Th e CRAY-1 computer system,” Comm. of the ACM 21:1 (January), 63–72.

A short summary of a classic computer that uses vectors of operations to remove pipeline stalls.

Smith, A. and J. Lee [1984]. “Branch prediction strategies and branch target buff er design,” Computer 17:1
(January), 6–22.

An early survey on branch prediction.

 4.16 Historical Perspective and Further Reading 4.16-7

Smith, J. E. and A. R. Plezkun [1988]. “Implementing precise interrupts in pipelined processors,” IEEE Trans.
on Computers 37:5 (May), 562–73.

Covers the diffi culties in interrupting pipelined computers.

Th ornton, J. E. [1970]. Design of a Computer. Th e Control Data 6600, Glenview, IL: Scott, Foresman.

A classic book describing a classic computer, considered the fi rst supercomputer.

