
  Historical Perspective and Further 
Reading

Th is section discusses the history of the fi rst pipelined processors, the earliest 
superscalars, and the development of out-of-order and speculative techniques, as 
well as important developments in the accompanying compiler technology.

It is generally agreed that one of the fi rst general-purpose pipelined computers 
was Stretch, the IBM 7030 (Figure 4.16.1). Stretch followed the IBM 704 and had a 
goal of being 100 times faster than the 704. Th e goals were a “stretch” of the state of 
the art at that time—hence the nickname. Th e plan was to obtain a factor of 1.6 from 
overlapping fetch, decode, and execute by using a four-stage pipeline. Apparently, 
the rest was to come from much more hardware and faster logic. Stretch was also 
a training ground for both the architects of the IBM 360, Gerrit Blaauw and Fred 
Brooks, Jr., and the architect of the IBM RS/6000, John Cocke.

supercomputer: Any 
machine still on the 
drawing board.
Stan Kelly-Bootle, Th e 
Devil’s DP Dictionary, 
1981

FIGURE 4.16.1 The Stretch computer, one of the fi rst pipelined computers.
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Control Data Corporation (CDC) delivered what is considered to be the fi rst 
supercomputer, the CDC 6600, in 1964 (Figure 4.16.2). Th e core instructions of 
Cray’s subsequent computers have many similarities to those of the original CDC 
6600. Th e CDC 6600 was unique in many ways. Th e interaction between pipelining 
and instruction set design was understood, and the instruction set was kept simple 
to promote pipelining. Th e CDC 6600 also used an advanced packaging technology. 
James Th ornton’s book [1970] provides an excellent description of the entire 
computer, from technology to architecture, and includes a foreword by Seymour 
Cray. (Unfortunately, this book is currently out of print.) Jim Smith, then working at 
CDC, developed the original 2-bit branch prediction scheme and explored several 
techniques for enhancing instruction issue. Cray, Th ornton, and Smith have each 
won the ACM Eckert-Mauchly Award (in 1989, 1994, and 1999, respectively).

Th e IBM 360/91 introduced many new concepts, including dynamic detection of 
memory hazards, generalized forwarding, and reservation stations (Figure 4.16.3). 
Th e approach is normally named Tomasulo’s algorithm, aft er an engineer who 
worked on the project. Th e team that created the 360/91 was led by Michael Flynn, 
who was given the 1992 ACM Eckert-Mauchly Award, in part for his contributions 
to the IBM 360/91; in 1997, the same award went to Robert Tomasulo for his 
pioneering work on out-of-order processing.

Th e internal organization of the 360/91 shares many features with the Pentium 
III and Pentium 4, as well as with several other microprocessors. One major 

FIGURE 4.16.2 The CDC 6600, the fi rst supercomputer.



 4.16-4 4.16 Historical Perspective and Further Reading

diff erence was that there was no branch prediction in the 360/91 and hence no 
speculation. Another major diff erence was that there was no commit unit, so 
once the instructions fi nished execution, they updated the registers. Out-of-order 
instruction commit led to imprecise interrupts, which proved to be unpopular and 
led to the commit units in dynamically scheduled pipelined processors since that 
time. Although the 360/91 was not a success, its key ideas were resurrected later 
and exist in some form in the majority of microprocessors of the last decade.

Improving Pipelining Effectiveness and Adding Multiple 
Issue
Th e RISC processors refi ned the notion of compiler-scheduled pipelines in the 
early 1980s. Th e concepts of delayed branches and delayed loads—common in 
microprogramming—were extended into the high-level architecture. In fact, 
the Stanford processor that led to the commercial MIPS architecture was called 
“Microprocessor without Interlocked Pipelined Stages” because it was up to the 
assembler or compiler to avoid data hazards.

In addition to its contribution to the development of the RISC concepts, IBM did 
pioneering work on multiple issue. In the 1960s, a project called ACS was under-
way. It included multiple-instruction issue concepts and the notion of integrated 
compiler and architecture design, but it never reached product stage. Th e earliest 
proposal for a superscalar processor that dynamically makes issue decisions was 

FIGURE 4.16.3 The IBM 360/91 pushed the state of the art in pipelined execution when 
it was unveiled in 1966.
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by John Cocke; he described the key ideas in several talks in the mid-1980s and, 
with Tilak Agarwala, coined the name superscalar. Th is original design was a two-
issue machine named Cheetah, which was followed by a more widely discussed 
four-issue machine named America. Th e IBM Power-1 architecture, used in the 
RS/6000 line, is based on these ideas, and the PowerPC is a variation of the Power-1 
architecture. Cocke won the Turing Award, the highest award in computer science 
and engineering, for his architecture work.

Static multiple issue, as exemplifi ed by the long instruction word (LIW) or 
sometimes very long instruction word (VLIW) approaches, appeared in real designs 
before the superscalar approach. In fact, the earliest multiple-issue machines 
were special-purpose attached processors designed for scientifi c applications. 
Culler Scientifi c and Floating Point Systems were two of the most prominent 
manufacturers of such computers. Another inspiration for the use of multiple 
operations per instruction came from those working on microcode compilers. 
Such inspiration led to a research project at Yale led by Josh Fisher, who coined 
the term VLIW. Cydrome and Multifl ow were two early companies involved in 
building mini-supercomputers using processors with multiple-issue capability. 
Th ese processors, built with bit-slice and multiple-chip gate array implementations, 
arrived on the market at the same time as the fi rst RISC microprocessors. Despite 
some promising performance on high-end scientifi c codes, the much better cost/
performance of the microprocessor-based computers doomed the fi rst generation 
of VLIW computers. Bob Rau and Josh Fisher won the Eckert-Mauchly Award in 
2002 and 2003, respectively, for their contributions to the development of multiple 
processors and soft ware techniques to exploit ILP.

Th e very beginning of the 1990s saw the fi rst superscalar processors using 
static scheduling and no speculation, including versions of the MIPS and 
PowerPC architectures. Th e early 1990s also saw important research at a number 
of universities, including Wisconsin, Stanford, Illinois, and Michigan, focused on 
techniques for exploiting additional ILP through multiple issue with and without 
speculation. Th ese research insights were used to build dynamically scheduled, 
speculative processors, including the Motorola 88110, MIPS R10000, DEC Alpha 
21264, PowerPC 603, and the Intel Pentium Pro, Pentium III, and Pentium 4.

In 2001, Intel introduced the IA-64 architecture and its fi rst implementation, 
Itanium. Itanium represented a return to a more compiler-intensive approach that 
they called EPIC. EPIC represented a considerable enhancement over the early 
VLIW architectures, removing many of their drawbacks. It has had modest sales. 
In 2013, the IA-64 architecture is used only in low-volume, high-end servers and is 
outnumbered by x86 processors by more than 100:1.

Compiler Technology for Exploiting ILP
Successful development of processors to exploit ILP has depended on progress in 
compiler technology. Th e concept of loop-unrolling was understood early, and a 
number of companies and researchers—including Floating Point Systems, Cray, and 
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the Stan ford MIPS project—developed compilers that made use of loop-unrolling 
and pipeline scheduling to improve instruction throughput. A special purpose 
processor called WARP, designed at Carnegie Mellon University, inspired the 
development of soft ware pipelining, an approach that symbolically unrolls loops.

To exploit higher levels of ILP, more aggressive compiler technology was needed. 
Th e VLIW project at Yale developed the concept of trace scheduling that Multi-
fl ow implemented in their compilers. Trace scheduling relies on aggressive loop 
unrolling and path prediction to compile favored execution traces effi  ciently. Th e 
Cydrome designers created early versions of predication and support for soft ware 
pipelining. Hwu at Illinois worked on extended versions of loop-unrolling, called 
superblocks, and techniques for compiling with predication. Th e concepts from 
Multifl ow, Cydrome, and the research group at Illinois served as the architectural 
and compiler basis for the IA-64 architecture.
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