The exam will be comprehensive and closed book. No materials other than your pen or pencil may be used. Study suggestions include:

- o Lecture material from class;
- o Lab material from lab, and lab handouts;
- o Homework specific issues;
- Student presentation notes;
- o Student test questions from in-class project presentations.

Questions may come from topics covered in our reading, lecture, homework, or labs. Topics in **bold** have been covered since the first exam.

• Lecture

- Course Introduction
 - Reference Chapter 1
 - Typical instrumentation system components
- Circuits review
 - Reference Circuits text book
 - Ohm's law, power, voltage dividers
 - Instrument loading, input and output impedance
- AC Signals
 - Reference Chapter 2.3
 - AC Measurement True RMS, average values
- Measurement Characteristics
 - Reference Chapter 1, Lecture notes
 - Measurement terms resolution, accuracy, precision, etc.
 - Measurement errors and sources
 - o Systematic vs. random sources of error
 - Calibration
 - Sensor overview
- o Data Acquisition and Number Systems
 - Reference Lecture notes
 - Analog vs. digital
 - Waveform characteristics
 - Binary number system
 - Number systems conversion
- Digital sampling
 - Reference Chapter 2.4-5
 - Analog-to-Digital conversion
 - Terms Full scale range (span), sampling rate, resolution, etc.
 - Other terms Quantization error, aliasing, Nyquist criteria
- Data Integrity
 - Reference Lecture notes
 - Single- vs. differential inputs

- Fourier Series and Fourier Transforms
 - Reference Chapter 2.4-5
 - Sampling rate and number of samples in the time domain
 - Nyquist frequency and rate
 - Fourier Series
 - o Symmetry Odd, even
 - Frequency spacing in the frequency domain
- Analog and Digital Filtering
 - Reference 6.8
 - Active vs. passive filters
 - Analog vs. digital filters
 - Filter types low-pass, high-pass, band-pass, and band-stop
- Sensor Overview
- Acceleration Sensors and Measurement
 - **Reference** 12.2
 - Types and principles of operation
- Strain Gauges and Strain Measurement
 - Reference 11.1-6
 - Types and principles of operation
- Student Presentations
 - Thermocouples
 - o Resistance Temperature Detectors
 - o Thermistors
 - o Pressure Measurement
 - Piezo-electric and Piezo-resistive Transducers
 - o Distance Measurement
 - Microelectromechanical Systems (MEMS)
 - o Force and Torque Measurement
 - Acoustical Measurement
 - o Flow Measurement
 - o Ultrasonic Measurement
 - Hall Effect and Magnetic Sensors

• Lab

- Lab #1 AC and DC Measurements
 - Ohm's law
 - Voltage division
 - Loading effect
 - Sinusoidal and non-sinusoidal voltage measurement
- Lab #2 Calibration
- Lab #3 Data Acquisition
 - Sampling rate, number of samples, arbitrary waveform analysis
- Lab #4 The Fourier Transform
 - Aliasing, sampling rate
- Lab #5 Mobile Devices
- Lab #6 Acceleration and Vibration Testing
 - Time domain and frequency domain (fft's) analysis
- Lab #7 Motion Analysis
 - Video analysis
 - Measurement of position, velocity, and acceleration
 - Filtering

- Fourier analysis and frequency components
- o Lab #8 Strain Gauges and/or Force Measurement (Extra Credit)

Homework

- HW#1 Basic concepts
- HW#2 Matlab and number systems
- HW#3 A/D Converter characteristics
 - Sampling rate, bit-depth, full-scale range (span), resolution in terms of bits
 - Terms related to ADC's
- HW#4 Sampling and Fourier Series
- HW#5 Field trip
- HW#6 Matlab mobile app
- HW#7 Student presentations