Engr354 : Digital Logic Circuits

Chapter 7: Registers and Counters

Curtis Nelson

Overview

- In this presentation we cover:
- Registers, which store multiple bits;
- Shift registers, which shift the contents of registers;
- Counters of various types.

Review - Sequential Circuits

- Combinational - outputs depends only on the inputs;
- Sequential - output depends on input and past behavior:
- Requires use of storage elements;
- Content of the storage elements is called state;
- Circuit goes through a sequence of states as a result of changes in inputs.
- Synchronous - Controlled by a clock;
- Asynchronous - No central clock.

Latches and Flip-Flops

Multibit Registers and Latches

74x374 8-bit Register

Shift Registers

- A shift register is an n-bit register with a provision for shifting stored data by one bit position at each tick of the clock.

Shift Registers - Serial-in, Parallel-out

74x194 4-bit Universal Shift Register

	Inputs			Next state			
Function	S1	so		QA*	QB*	QC*	QD*
Hold	0	0		QA	QB	QC	QD
Shift right	0	1		RIN	QA	QB	QC
Shift left	1	0		QB	QC	QD	LIN
Load	1	1		A	B	C	D

Table 8-24
Function table for the 74×194 4-bit universal shift register.

74x194 4-bit Universal Shift Register

Figure 8-41
Logic diagram for the 74×194 4-bit universal shift register, including pin numbers for a standard 16-pin dual in-line package.

74x194 4-bit Universal Shift Register

Figure 8-42
Simplest design for a 4-bit, 4-state ring counter with a single circulating 1.

74x194 4-bit Universal Shift Register

Figure 8-43
Timing diagram for a 4-bit ring counter.

Counters

- Counter - generally used for any clocked sequential circuit whose state diagram contains a single cycle;
- Modulus - the number of states in the cycle;
- A counter with m states is called a modulus- m counter or a divide-by-m counter;
- Synchronous counters:
- Connect all of its flip-flop clock inputs to the same common CLK signal so that all flip-flop outputs change at the same time.

Synchronous 4-bit Binary Counter - 74x163

Figure 8-27
Traditional logic symbol for the 74×163.

Inputs				Current State				Next State			
CLR_L	LD_L	ENT	ENP	$Q D$	$a c$	$Q B$	QA	QD*	$Q C^{*}$	QB*	QA*
0	x	x	x	x	x	x	x	0	0	0	0
1	0	x	x	x	x	x	x	D	c	B	A
1	1	0	x	x	x	x	x	QD	QC	QB	QA
1	1	x	0	x	x	x	x	QD	QC	QB	QA
1	1	1	1	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	1	0	0	1	0
1	1	1	1	0	0	1	0	0	0	1	1
1	1	1	1	0	0	1	1	0	1	0	0
1	1	1	1	0	1	0	0	0	1	0	1
1	1	1	1	0	1	0	1	0	1	1	0
1	1	1	1	0	1	1	0	0	1	1	1
1	1	1	1	0	1	1	1	1	0	0	0
1	1	1	1	1	0	0	0	1	0	0	1
1	1	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	0	1	0	1	0	1	1
1	1	1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1		0	1	1	0	1
1	1	1	1	1	1		1	1	1	1	0
1	1	1	1	1	1		0	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	0

Synchronous 4-bit Binary Counter - 74x163

Figure 8-28
Logic diagram for the 74×163 synchronous 4 -bit binary counter, including pin numbers for a standard 16-pin DIP package.

Synchronous 4-bit Binary Counter - 74x163

Figure 8-29
Connections for the 74×163 to operate in a free-running mode.

Synchronous 4-bit Binary Counter - 74x169

Figure 8-32
Logic symbol for the 74×169 up/down counter.

Johnson Counter

Three-Bit Up-Counter

(b) Timing diagram

Three-bit Down-Counter

(a) Circuit

(b) Timing diagram

Four-bit Synchronous Up-Counter

(a) Circuit

(b) Timing diagram

Inclusion of Enable and Clear Capability

Counter with Parallel-load Capability

Modulo-6 Counter with Synchronous Reset

(a) Circuit

(b) Timing diagram

Modulo-6 Counter with Asynchronous Reset

(a) Circuit

(b) Timing diagram

A Two-digit BCD Counter

Summary

- In this presentation we covered:
- Registers, which store multiple bits;
- Shift registers, which shift the contents of registers;
- Counters of various types.

