Sequential Circuit Design

Name

\qquad
Partner
Grade \qquad /10

Objectives

- Gain sequential logic design experience;
- Gain experience using a logic simulator (Logisim);
- Gain maturity in the construction and debugging of logic circuits.

Circuit Components Required

- Various SSI and MSI IC's.
- Breadboards;
- Wire;
- Instruments as necessary.

Procedure

- Design a 2-bit grey code counter that counts up if the one input up/down is asserted, otherwise it counts down. There are two outputs, X and Y . X is asserted when the present state has an odd number of bits asserted. Y is asserted when the present state bits are the same.
- Use rising edge-triggered D flip-flops as your memory elements.
- Simulate your design in Logisim.
- Fully document your design following the 9 -step design process presented in class.
- Find an absolute minimum number of IC's needed to implement your design.
- Wire up your circuit using the breadboards in the digital lab. Set $\mathrm{V}_{\mathrm{dd}}=3.0$ volts. Have your circuit checked out by the lab assistant before you leave lab. Here is a list of parts available for you to use:

| 74HC00 | Quad 2-Input NAND Gate |
| :--- | :--- |$|$| 74HC74 Dual D Flip-Flop |
| :--- |
| 74HC02 |
| Quad 2-Input NOR Gate |

To Turn In

- Staple together
- This handout;
- A schematic of your circuit. This can be hand written if it is neat;
- A hard copy of your simulation results. Make sure you have sufficient resolution on all traces;
- A short write-up explaining your design, procedures, results, conclusions, and lessons learned. Each person must turn in a report;
- This hard-copy information is due by the beginning of class on Wednesday, October 2.

