
Chu – Chapter 2
1

Chapter 2
Hardware Description Languages

Dr. Curt Nelson
Engr433 – Digital Design

Outline

Overview of hardware description languages;
Basic VHDL concepts via an example;
VHDL in development flow.



Chu – Chapter 2
2

Programming Languages 

• Can we use C or Java as a High-Level Description Language 
(HDL) targeting hardware?

• A computer programming language
– Semantics (“meaning”);
– Syntax (“grammar”).

• Development of a language
– Study the characteristics of the underlying processes;
– Develop syntactic constructs and their associated semantics to model 

and express these characteristics.
• Traditional programing languages are modeled after a 

sequential process
– Operations performed in a sequential order;
– Help human's thinking process to develop an algorithm step by step.

HDL

• Characteristics of digital hardware 
– Connections of parts;
– Concurrent operations;
– Concept of propagation delay and timing.

• Characteristics cannot be captured by traditional Programming 
Languages.

• Therefore, we require a Hardware Specific Language
– VHDL
– Verilog



Chu – Chapter 2
3

Uses of an HDL Program

• Formal documentation;
• Generate input to a simulator;
• Generate input to a synthesizer.

HDL Features

• Encapsulate the concepts of entity, connectivity, 
concurrency, and timing;

• Incorporate propagation delay and timing information;
• Consist of constructs for structural implementation;
• Incorporate constructs for behavioral descriptions 

(sequential execution of a traditional PL);
• Describe the operations and structures at the gate-level and 

register-transfer level;
• Consist of constructs to support hierarchical design 

processes.



Chu – Chapter 2
4

Two HDLs Used Today

• VHDL and Verilog;
• Syntax and “appearance’” of the two languages are very 

different;
• Capabilities and scopes are quite similar;
• Both are industrial standards and are supported by most 

software tools.

VHDL

• VHDL - VHSIC (Very High Speed Integrated Circuit) HDL;
• Initially sponsored by DoD as a hardware documentation 

standard in early 1980’s;
• Transferred to IEEE and ratified as IEEE standard 1176 in 

1987 (known as VHDL-87);
• Major modification in 1993 (known as VHDL-93);
• Revised continuously.



Chu – Chapter 2
5

IEEE Extensions

• IEEE standard 1076.1 Analog and Mixed Signal Extensions 
(VHDL-AMS);

• IEEE standard 1076.2 Mathematical Packages;
• IEEE standard 1076.3 Synthesis Packages;
• IEEE standard 1076.4 VHDL Initiative Towards ASIC 

Libraries (VITAL);
• IEEE standard 1076.6 VHDL Register-Transfer-Level (RTL) 

Synthesis;
• IEEE standard 1164 Multi-value Logic System for VHDL 

Model Interoperability;
• IEEE standard 1029 VHDL Waveform and Vector Exchange 

to Support Design and Test Verification (WAVES).

Example - Even Parity Detection Circuit

• Inputs: a(2), a(1), a(0)
• Output: even



Chu – Chapter 2
6

VHDL Listing 2.1 – Even Parity Detector
library ieee;
use ieee.std_logic_1164.all;

-- entity declaration
entity even_detector is

port(
a: in std_logic_vector(2 downto 0);
even: out std_logic

);
end even_detector;

-- architecture body
architecture sop_arch of even_detector is

signal p1, p2, p3, p4 : std_logic;
begin

even <= (p1 or p2) or (p3 or p4) after 20 ns;
p1 <= (not a(2)) and (not a(1)) and (not a(0)) after 15 ns;
p2 <= (not a(2)) and a(1) and a(0) after 12 ns;
p3 <= a(2) and (not a(1)) and a(0) after 12 ns;
p4 <= a(2) and a(1) and (not a(0)) after 12 ns;

end sop_arch ;

Program Interpretation

• Entity declaration
– i/o ports (the top-level inputs and outputs)

• Architecture body
– Signal declaration (internal signals)
– Each concurrent statement

• Can be thought of as a circuit part;
• Contains timing information.

– Architecture body can be thought of as a collection of parts



Chu – Chapter 2
7

Conceptual Interpretation

VHDL Listing 2.2 – Using XOR Network

• Same entity declaration;
• Implicit delay assumed (very small number) when delay is 

not specified

architecture xor_arch of even_detector is
signal odd: std_logic;

begin
even <= not odd;
odd <= a(2) xor a(1) xor a(0);

end xor_arch;



Chu – Chapter 2
8

Structural Description

• In structural view, a circuit is constructed by smaller parts;
• Structural description specifies the types of parts and 

connections;
• Essentially a textual description of a schematic;
• Done by using the keyword component in VHDL

– First declared (make known);
– Then instantiated (used).

Structural Example

• Even detector using previously designed components 
(xor2 and not1).



Chu – Chapter 2
9

VHDL Listing 2.3 – Structural Example

architecture str_arch of even_detector is
-- declaration for xor gate
component xor2

port(
i1, i2: in std_logic;
o1: out std_logic

);
end component;
-- declaration for inverter
component not1

port(
i1: in std_logic;
o1: out std_logic

);
end component;
signal sig1,sig2: std_logic;

begin
-- instantiation of the 1st xor instance
unit1: xor2

port map (i1 => a(0), i2 => a(1), o1 => 
sig1);

-- instantiation of the 2nd xor instance
unit2: xor2

port map (i1 => a(2), i2 => sig1, o1 => 
sig2);

-- instantiation of invertor
unit3: not1

port map (i1 => sig2, o1 => even);
end str_arch;

VHDL Listing 2.4 - Behavioral Description



Chu – Chapter 2
10

“Behavioral” Description

• No formal definition on “behavioral” in VHDL;
• VHDL “process” - a language construct to encapsulate 

sequential semantics
– The entire process is a concurrent statement;
– Syntax:

Listing 2.5



Chu – Chapter 2
11

Conceptual Interpretation

Listing 2.6 – Another Behavioral Description



Chu – Chapter 2
12

Testbench
• A “virtual” experiment table

– Circuit to be tested;
– Input stimuli (e.g., function generator);
– Output monitor (e.g., logic analyzer).

VHDL Listing 2.7 – Simple Testbench



Chu – Chapter 2
13

Testbench - Continued

Testbench - Continued



Chu – Chapter 2
14

Configuration

• Multiple architecture bodies can be associated with an 
entity declaration
– Like IC chips and sockets.

• VHDL configuration specifies the binding

Synthesis

• Design realized by available hardware components;
• Many VHDL constructs can be synthesized (e,g, file operation, 

floating-point data type, division)
– Only small subset can be used;
– E.g., some control structures like loops or conditional branches can 

simulate easily but cannot be efficiently mapped to hardware.
• Syntactically correct code ≠ Synthesizable code;
• Synthesizable code ≠ Efficient code;
• Synthesis software only performs transformation from a text 

file to available hardware.



Chu – Chapter 2
15

Summary

• This course focuses on hardware (the H not the L in VHDL)
• Emphasis on coding for synthesis

– Code accurately describing the underlying hardware structure;
– Code providing adequate info to guide synthesis software to generate 

efficient implementations.


