Chapter 2

Hardware Description Languages

Dr. Curt Nelson
Engr433 — Digital Design

Outline

Overview of hardware description languages;
Basic VHDL concepts via an example;
VHDL in development flow.

Chu — Chapter 2

Programming Languages

Can we use C or Java as a High-Level Description Language
(HDL) targeting hardware?
A computer programming language
— Semantics (“meaning”);
— Syntax (“grammar”).
Development of a language
— Study the characteristics of the underlying processes;

— Develop syntactic constructs and their associated semantics to model
and express these characteristics.

Traditional programing languages are modeled after a
sequential process

— Operations performed in a sequential order;
— Help human's thinking process to develop an algorithm step by step.

HDL

Characteristics of digital hardware

— Connections of parts;

— Concurrent operations;

— Concept of propagation delay and timing.
Characteristics cannot be captured by traditional Programming
Languages.

Therefore, we require a Hardware Specific Language
— VHDL
— Verilog

Chu — Chapter 2

Uses of an HDL Program

* Formal documentation;
* Generate input to a simulator;
* Generate input to a synthesizer.

HDL Features

* Encapsulate the concepts of entity, connectivity,
concurrency, and timing;

* Incorporate propagation delay and timing information;

» Consist of constructs for structural implementation;

* Incorporate constructs for behavioral descriptions
(sequential execution of a traditional PL);

* Describe the operations and structures at the gate-level and
register-transfer level;

» Consist of constructs to support hierarchical design
processes.

Chu — Chapter 2

Two HDLs Used Today

VHDL and Verilog;

Syntax and “appearance
different;

Capabilities and scopes are quite similar;

299

of the two languages are very

Both are industrial standards and are supported by most
software tools.

VHDL

VHDL - VHSIC (Very High Speed Integrated Circuit) HDL;

Initially sponsored by DoD as a hardware documentation
standard in early 1980’s;

Transferred to IEEE and ratified as IEEE standard 1176 in
1987 (known as VHDL-87);

Major modification in 1993 (known as VHDL-93);

Revised continuously.

Chu — Chapter 2

IEEE Extensions

IEEE standard 1076.1 Analog and Mixed Signal Extensions
(VHDL-AMYS);

IEEE standard 1076.2 Mathematical Packages;

IEEE standard 1076.3 Synthesis Packages;

IEEE standard 1076.4 VHDL Initiative Towards ASIC
Libraries (VITAL);

IEEE standard 1076.6 VHDL Register-Transfer-Level (RTL)
Synthesis;

IEEE standard 1164 Multi-value Logic System for VHDL
Model Interoperability;

IEEE standard 1029 VHDL Waveform and Vector Exchange
to Support Design and Test Verification (WAVES).

Example - Even Parity Detection Circuit

* Inputs: a(2), a(1), a(0)
* Output: even

a(2) a(l) a(o® even

> 0 0 0 1
0 0 1 0

0 1 0 0

0 1 1 1

even 1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

even = a(2) - u(l)/ . rl((')/ +¢1(2)/ ~a(l)-a(0) +a(2) ~a(l) - a(0) +a(2)-a(l) ~u(li)/

Chu — Chapter 2

VHDL Listing 2.1 — Even Parity Detector

library ieee;
use ieee.std_logic 1164.all;

-- entity declaration
entity even_detector is
port(
a: in std_logic_vector(2 downto 0);
even: out std_logic
)

end even_detector;

-- architecture body
architecture sop_arch of even_detector is
signal p1, p2, p3, p4 : std_logic;
begin
even <= (pl or p2) or (p3 or p4) after 20 ns;
pl <= (not a(2)) and (not a(1)) and (not a(0)) after 15 ns;
p2 <= (not a(2)) and a(1) and a(0) after 12 ns;
p3 <= a(2) and (not a(1)) and a(0) after 12 ns;
p4 <=a(2) and a(1) and (not a(0)) after 12 ns;
end sop_arch ;

Program Interpretation

* Entity declaration
— i/o ports (the top-level inputs and outputs)
* Architecture body
— Signal declaration (internal signals)
— Each concurrent statement
+ Can be thought of as a circuit part;
+ Contains timing information.
— Architecture body can be thought of as a collection of parts

Chu — Chapter 2

Conceptual Interpretation

a(2) (not a(2)) and p0
a(1) (not a(1)) and
a0) (not a(0))

(nota(2)) and p1
a(1) and
a(0)

(p1 or p2) or
(p3 or p4)

even

a(2) and p2 —
(not a(1)) and
a(0)

a(2) and p3
a(1) and
(not a(0))

VHDL Listing 2.2 — Using XOR Network

o

a2) — odd
a(1) = a(2) xor a(1) xor a(0) not odd

even

» Same entity declaration;

 Implicit delay assumed (very small number) when delay is
not specified

architecture xor_arch of even_detector is
signal odd: std_logic;

begin
even <= not odd;
odd <= a(2) xor a(1) xor a(0);

end xor_arch;

Chu — Chapter 2

Structural Description

* In structural view, a circuit is constructed by smaller parts;

 Structural description specifies the types of parts and
connections;
» Essentially a textual description of a schematic;

* Done by using the keyword component in VHDL
— First declared (make known);
— Then instantiated (used).

Structural Example

» Even detector using previously designed components
(xor2 and notl).

unit 1
a(0) it sigt
xor2 ol 9
a(t) 2 ‘ unit 2 unit 3
i1 sig2
xor2 ol i1 notl o even
a(2) 2

Chu — Chapter 2

VHDL Listing 2.3 —

architecture str_arch of even_detector is
-- declaration for xor gate
component xor2
port(
il, 12: in std_logic;
ol: out std_logic
);
end component;
-- declaration for inverter
component notl
port(
il: in std_logic;
ol: out std_logic
);
end component;
signal sigl,sig2: std_logic;

Structural Example

begin
-- instantiation of the 1st xor instance
unitl: xor2
port map (il => a(0), i2 => a(1), ol =>
sigl);
-- instantiation of the 2nd xor instance
unit2: xor2
port map (il => a(2), i2 => sigl, ol =>
sig2);
-- instantiation of invertor
unit3: notl
port map (il => sig2, ol => even);
end str_arch;

VHDL Listing 2.4 - Behavioral Description

library ieee;

use ieee.std_logic_1164.all;

entity xor2 is
port(
i1, i2:

in std_logic;

ol: out std_logic);

end xor2;

architecture beh_arch of xor2 is

begin

ol <= il xor

end beh_arch;

library ieee;

i2;

use ieee.std_logic_1164.all;

entity notl is
port(

il: in std_logic;
ol: out std_logic);

end notl;

architecture beh_arch of notl is

begin

ol <= not il;

end beh_arch;

Chu — Chapter 2

“Behavioral” Description

* No formal definition on “behavioral” in VHDL;
* VHDL “process” - a language construct to encapsulate
sequential semantics
— The entire process is a concurrent statement;
— Syntax:

process (sensitivity_list)
variable declaration;
begin
sequential statements;
end process;

Listing 2.5

architecture behl_arch of even_detector
signal odd: std_logic;
begin
even <= not odd;
process (a)
variable tmp: std_1l®gic;
begin
tmp := ’07;
for i in 2 downto O loop
tmp := tmp Xxor a(i);
end loop;
odd <= tmp;
end process;
end behl_arch;

is

Chu — Chapter 2

10

Conceptual Interpretation

process (a)
variable tmp: std_logic;

begin
a2) tmp :='0";
foriin 2 downto 0 loop
a(1) ————— — A
tmp := tmp xor a(i);
a(0) end loop;
odd <= tmp;
end process;

odd

not odd

|———— even

Listing 2.6 — Another Behavioral Description

architecture beh2_arch of even_detector

begin
process (a)
variable sum, r: integer;
begin
sum := 0;
for i in 2 downto O loop
if a(i)=’1’ then

sum := sum +1;
end if;
end loop ;
r := sum mod 2;
if (r=0) then
even <= ’17; a2) —
else a(1)
even <=’07;
end if; a(0)

end process;

is

process (a)
variable sum, r: integer;
begin
sum = 0;
foriin 2 downto 0 loop
if a(i)="1" then
sum :=sum +1;
end if;
end loop ;

end process;

even

Chu — Chapter 2

11

Testbench

+ A “virtual” experiment table
— Circuit to be tested,;
— Input stimuli (e.g., function generator);
— Output monitor (e.g., logic analyzer).

uut

process

begin
test_in <="000";
wait for 200 ns; test_in

test_out

test_in <="001"; a[2..0] even
wait for 200 ns;
test_in <="010";
wait for 200 ns;
test_in <="011";

even_detector

end process;

process
variable . . .
begin
wait on test_in;
wait for 100 ns;
if ((test_in="000" and
test_out="1") or
(test_in="001" and
test_out ='0") or

end process;

VHDL Listing 2.7 — Simple Testbench

library ieee;

use ieee.std_logic_1164. all;
entity even_detector_testbench is
end even_detector_testbench;

architecture tb_arch of even_detector_testbench is

component even_detector
port(

a: in std_logic_vector (2 downto 0);

even: out std_logic);
end component;

signal test_in: std_logic_vector (2 downto 0);

signal test_out: std_logic;

begin
— instantiate the circuit under
uut: even_detector

test

port map(a=>test_in, even=>test_out);

Chu — Chapter 2

12

Testbench - Continued

— test vector

genVUrator

process

begin
test_in <= "000";
wait for 200 ns;
test_in <= "001";
wait for 200 ns;
test_in <= "010";
wait for 200 ns;
test_in <= "O011";
wait for 200 ns;
test_in <= "100";
wait for 200 ns;
test_in <= "101";
wait for 200 ns;
test_in <= "110";
wait for 200 ns;
test_in <= "111";

wait for 200 ns;

end process;

Testbench - Continued

Myerifier

process

variable error_status:

begin
wait on test_in;
wait for 100 ns;

boolean;

if ((test_in="000" and test_out
(test_in="001" and test_out
(test_in="010" and test_out
(test_in="011" and test_out
(test_in="100" and test_out
(test_in="101" and test_out
(test_in="110" and test_out
(test_in="111" and test_out
then
error_status := false;
else
error_status := true;
end if;

—— error reporting

assert not error_status

severity note;
end tb_arch;

report "test failed.

!1))
)07)
)07)
111)
10))
11))
1)

’07))

or
or
or
or
or
or
or

Chu — Chapter 2

13

Configuration

» Multiple architecture bodies can be associated with an
entity declaration
— Like IC chips and sockets.

* VHDL configuration specifies the binding

configuration demo_cﬂnfig of even_detector_testbench is
for tb_arch
for uut: even_detector
use entity work.even_detector (sop_arch);
end for;
end for;
end demo_config;

Synthesis

» Design realized by available hardware components;
» Many VHDL constructs can be synthesized (e,g, file operation,
floating-point data type, division)
— Only small subset can be used;

— E.g., some control structures like loops or conditional branches can
simulate easily but cannot be efficiently mapped to hardware.

» Syntactically correct code # Synthesizable code;
» Synthesizable code # Efficient code;

 Synthesis software only performs transformation from a text
file to available hardware.

Chu — Chapter 2

14

Summary

 This course focuses on hardware (the H not the L. in VHDL)
* Emphasis on coding for synthesis

— Code accurately describing the underlying hardware structure;

— Code providing adequate info to guide synthesis software to generate
efficient implementations.

Chu — Chapter 2

15

