
Chu – Chapter 3 1

Chapter 3
Basic Language Constructs of VHDL

Dr. Curt Nelson
Engr433 – Digital Design

Outline

• Basic VHDL programs;
• Lexical elements and program format;
• Objects;
• Data type and operators.



Chu – Chapter 3 2

Design Unit

• Each design unit is analyzed and stored independently
• Types of design units

– Entity declaration;
– Architecture body;
– Package declaration;
– Package body;
– Configuration.

Entity Declaration

• General syntax



Chu – Chapter 3 3

• Mode:
– in: flow into the circuit
– out: flow out of the circuit
– inout: bi-directional 

Entity Declaration

A Common Mistake



Chu – Chapter 3 4

• Use an internal signal

One Fix

Architecture Body

• Simplified syntax:

• An entity declaration can be associated with multiple 
architecture bodies.



Chu – Chapter 3 5

Example Architecture Body

Other Design Units

• Package declaration/body
– collection of commonly used items, such as data types, subprograms 

and components.

• Configuration
– specifies which architecture body is to be bound with the entity 

declaration.



Chu – Chapter 3 6

VHDL Library

• A place to store the design units;
• Normally mapped to a directory in host computer;
• Software defines the mapping between the symbolic library 

and physical location;
• Default library is named work and is created in your project 

directory;
• Library “ieee” is used for many ieee packages.

• Line 1 - invoke a library named ieee;
• Line 2 - makes  std_logic_1164 package visible to the 

subsequent design units;
• The package is normally needed for the 

std_logic/std_logic_vector data type.

VHDL Library Example



Chu – Chapter 3 7

Processing of VHDL Code

• Analysis
– Performed on “design unit” basis;
– Check the syntax and translate the unit into an intermediate form;
– Store it in a library.

• Elaboration
– Bind architecture body with entity;
– Substitute the instantiated components with architecture description;
– Create a “flattened”' description.

• Execution
– Simulation or synthesis.

Lexical Elements

• Lexical element
– Basic syntactical units in a VHDL program

• Types of lexical elements
– Comments 
– Identifiers
– Reserved words
– Numbers
– Characters
– Strings



Chu – Chapter 3 8

Comments

• Start with - -
• Just for clarity 

Identifier

• Identifier is the name of an object
• Basic rules

– Can only contain alphabetic letters, decimal digits, and underscore;
– The first character must be a letter;
– The last character cannot be an underscore;
– Two successive underscores are not allowed.



Chu – Chapter 3 9

Identifier Examples

• Valid examples
A10, next_state, NextState, mem_addr_enable

• Invalid examples
sig#3, _X10, 7segment, X10_, hi_ _there

• VHDL is case insensitive
Following identifiers are the same:

nextstate,  NextState,  NEXTSTATE, nEXTsTATE

Reserved Words



Chu – Chapter 3 10

Numbers, Characters and Strings

• Number
– Integer: 0, 1234, 98E7
– Real: 0.0, 1.23456 or 9.87E6
– Base 2: 2#101101#

• Character
– ‘A’,  ‘Z’, ‘1’

• Strings
– “Hello”, “101101”

• Notes
– 0 and ‘0’ are different
– 2#101101# and “101101” are different

Program Format

• VHDL is “free-format” - blank space, tab, new-line can be 
freely inserted.

• The following are the same:



Chu – Chapter 3 11

Program Format - Example

A Good Program Header



Chu – Chapter 3 12

Objects

• A named item that holds a value of specific data type.
• Four kinds of objects

– Signal;
– Variable;
– Constant;
– File (cannot be synthesized).

• Related construct
– Alias

Signal

• Declared in the architecture body's declaration section
• Signal declaration

signal signal_name, signal_name, ... : data_type

• Signal assignment
signal_name <= projected_waveform

• Ports in entity declaration are considered as signals
– Can be interpreted as wires or “wires with memory” (i.e., FFs, latches, 

etc.)



Chu – Chapter 3 13

Variable

• Declared and used inside a process.
• Variable declaration

variable variable_name, ... : data_type

• Variable assignment
variable_name := value_expression;

• Contains no “timing info” (immediate assignment).
• Used as in traditional programming languages - a 

“symbolic memory location” where a value can be stored 
and modified.

• No direct hardware counterpart.

Constant

• Value cannot be changed.
• Constant declaration

constant const_name, ... : data_type := value_expression

• Used to enhance readability.



Chu – Chapter 3 14

Try to Avoid Hard Literals

Alias

• Not an object.
• Alternative name for an object.
• Used to enhance readability.



Chu – Chapter 3 15

Data Type and Operators

• Standard VHDL.
• IEEE1164_std_logic package.
• IEEE numeric_std package.

Data Type

• Definition of data type
– A set of values that an object can assume.
– A set of operations that can be performed on objects of this data type.

• VHDL is a strongly-typed language
– An object can only be assigned with a value of its type.
– Only the operations defined with the data type can be performed on the 

object.



Chu – Chapter 3 16

Data Types in Standard VHDL

• Integer
– Minimal range: -(2^31-1) to 2^31-1
– Two subtypes: natural, positive

• Boolean: (false, true)
• Bit: ('0', '1')

– Not capable enough (need more options as we will see later).

• Bit_vector - a one-dimensional array of type bit.

Operators in Standard VHDL



Chu – Chapter 3 17

Operators in Standard VHDL

IEEE std_logic_1164 Package

• What’s wrong with bit?
• New data type: std_logic, std_logic_vector
• std_logic: 

– 9 values: ('0', '1', 'Z', 'L', 'H', 'X', ‘W’, 'U', '-')
• '0', '1': forcing logic 0 and forcing logic 1
• 'Z': high-impedance, as in a tri-state buffer
• 'L' , 'H': weak logic 0 and weak logic 1, as in wired-logic
• 'X', 'W': “unknown” and “weak unknown”
• 'U': for uninitialized
• '-': don't-care



Chu – Chapter 3 18

• std_logic_vector
– An array of elements with std_logic data type
– Implies a bus

signal a: std_logic_vector(7 downto 0);
– Another form (less desired)

signal a: std_logic_vector(0 to 7);

• Need to invoke package to use the data type
library ieee;
use ieee.std_logic_1164.all;

std_logic_vector

Overloaded Operator - IEEE std_logic_1164 Package

• Which standard VHDL operators can be applied to  std_logic 
and std_logic_vector?

• Overloading: same operator of different data types 
• Overloaded operators in std_logic_1164 package



Chu – Chapter 3 19

Type Conversion in std_logic_1164 Package

Type Conversion Example



Chu – Chapter 3 20

Operators Over an Array Data Type

• Relational operators for array
– Operands must have the same element type but their lengths may differ.
– Two arrays are compared element by element, from the left most 

element.
– All following returns true

• "011"="011",   "011">"010",   "011">"00010", "0110">"011"

Concatenation Operator

• Concatenation operator (&)
y <= "00" & a(7 downto 2);
y <= a(7) & a(7) & a(7 downto 2);
y <= a(1 downto 0) & a(7 downto 2);



Chu – Chapter 3 21

Array Aggregate

• Aggregate is a VHDL construct to assign a value to an 
array-typed object

a <= "10100000";
a <= (7=>'1', 6=>'0', 0=>'0', 1=>'0', 5=>'1',   

4=>'0', 3=>'0', 2=>'1');
a <= (7|5=>'1', 6|4|3|2|1|0=>'0');
a <= (7|5=>'1', others=>'0');

• IEEE numeric_std package - define integer as an array of 
elements of std_logic

• Two new data types: unsigned, signed
• The array interpreted as an unsigned or signed binary number

signal x, y: signed(15 downto 0);

• Need to invoke package to use the data type
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

IEEE numeric_std Package



Chu – Chapter 3 22

Overloaded Operators in IEEE numeric_std Package 

Overloaded Operators - Example



Chu – Chapter 3 23

New Functions in IEEE numeric_std Package

Type Conversion

• Std_logic_vector, unsigned, signed are defined as an array of 
element of std_logic

• They are considered as three different data types in VHDL.
• Type conversion between data types

– Type conversion function.
– Type casting (for “closely related” data types).



Chu – Chapter 3 24

Type Conversion Between Number-related Data Types

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
. . .
signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
signal u1, u2, u3, u4, u6, u7: unsigned(3 downto 0);
signal sg: signed(3 downto 0);

Type Conversion Example



Chu – Chapter 3 25

• Ok
u3 <= u2 + u1; --- ok, both operands unsigned
u4 <= u2 + 1; --- ok, operands unsigned and natural

• Wrong
u5 <= sg; -- type mismatch
u6 <= 5; -- type mismatch

• Fix
u5 <= unsigned(sg); -- type casting
u6 <= to_unsigned(5,4); -- conversion function

Type Conversion Example

• Wrong
u7 <= sg + u1;   -- + undefined over the types

• Fix
u7 <= unsigned(sg) + u1; -- ok, but be careful

• Wrong
s3 <= u3;  -- type mismatch
s4 <= 5;   -- type mismatch

• Fix
s3 <= std_logic_vector(u3); -- type casting
s4 <= std_logic_vector(to_unsigned(5,4)); 

Type Conversion Example



Chu – Chapter 3 26

• Wrong
s5 <= s2 + s1;  -- + undefined over std_logic_vector
s6 <= s2 + 1;    -- + undefined

• Fix
s5 <= std_logic_vector(unsigned(s2) + unsigned(s1)); 
s6 <= std_logic_vector(unsigned(s2) + 1);         

Type Conversion Example

Non-IEEE Packages

• Packagea by Synopsys.
• std_logic_arith

– Similar to numeric_std
– New data types: unsigned, signed
– Details are different

• std_logic_unsigned/ std_logic_signed
– Treat std_logic_vector as unsigned and signed numbers
– i.e., overload std_logic_vector with arith operations



Chu – Chapter 3 27

• Software vendors frequently store them in ieee library
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_arith_unsigned.all;
. . .
signal s1, s2, s3, s4, s5, s6: std_logic_vector(3 downto 0);
. . .
s5 <= s2 + s1; -- ok, + overloaded with std_logic_vector
s6 <= s2 + 1;  -- ok, + overloaded with std_logic_vector

Non-IEEE Packages


