Chu - Chapter 5

Chapter 5
Sequential Statements of VHDL

Dr. Curt Nelson
Engr433 — Digital Design

Outline

VHDL process;

Sequential signal assignment statement;
Variable assignment statement;

IF statement;

CASE statement;

Simple FOR loop statement.

VHDL Process

» Contains a set of statements to be executed sequentially.

» The whole process is a concurrent statement.

+ Can be interpreted as a circuit part enclosed in a black box.
* May or may not be able to be mapped to physical hardware.
* Two types of process

— A process with a sensitivity list.
— A process with a wait statement.

A Process With a Sensitivity List

* Syntax
process(sensitivity list)
declarations;
begin
sequential statement;
sequential statement;

end process;

Chu - Chapter 5

VHDL Process Description

* A process is like a circuit part, which can be
— active (known as activated);
— inactive (known as suspended).
* A process is activated when a signal in the sensitivity list
changes its value.
« Its statements will be executed sequentially until the end of
the process.

Example: 3-Input AND Circuit

signal a,b,c,y: std_logic;
process(a,b,c)
begin
y<=aandb and c;
end process;
 The following code is lame
process(a)
begin
y<=aandb and c;
end process;
» For a combinational circuit, all inputs should be included in
the sensitivity list.

Chu - Chapter 5

Chu - Chapter 5

Process With a Wait Statement

» Process has no sensitivity list.

and then suspended.

» Forms of wait statement

— wait on signals;
— wait until boolean_expression;
— wait for time expression;

Wait Statement Example

* 3-input AND circuit
process
begin
y<=aandb and c;
waiton a, b, c;

end process;

* A process can have multiple wait statements.

» A Process with a sensitivity list is preferred for synthesis.

Process continues execution until a wait statement is reached

Sequential Signal Assignment Statement

* Syntax
signal name <= value expression;

+ Syntax is identical to the simple concurrent signal assignment.
+ Caution
— Inside a process, a signal can be assigned multiple times, but only the

last assignment takes effect.

Sequential Signal Assignment Example

process(a,b,c,d)

begin - yentry =Yy
y<=aorc; == Yexit = @ OF C;
y <=a and ba = VYexit = a and b’
y <=c and d; - Vexit = ¢ and d;

end process; ==Y <= Yexit

* Same as

process(a,b,c,d)

begin
y <=cand d;

end process;
* What happens if the 3 statements are concurrent statements?

— Wired AND function.

Chu - Chapter 5

Chu - Chapter 5

Variable Assignment Statement

Syntax
variable name := value expression;

Assignment takes effect immediately.

No time dimension (i.e., no delay).

Behaves like variables in C.

Difficult to map to hardware, but depends on the context.

Variable Assignment Interpretation

process(a,b,c)

variable tmp0, tmp1, tmp2: std_logic;
begin

tmp0 :='0";

tmpl :=tmpO or a;

tmp2 :=tmp1 or b;

y <= tmp2;
end process;

tmp0

IOI
tmp1
a
tmp2
b) —

What Happens if Signal is Used?

process(a,b,c,tmp)
begin - tMPepyry = tmp
tmp <="0"; - tMPeyit := 075
tmp <=tmp or a; -- tmpey;j; == tmpentry or a;
tmp <= tmp or b; -- tmpeyi := tMPeyery OF b;
end process; -- tmp <= tMPey;
* Same as
process(a,b,c,tmp)
begin
tmp <= tmp or b;
end process;

IF Statement Syntax

if boolean _expr 1 then
sequential statements;
elsif boolean_expr 2 then
sequential statements;
elsif boolean_expr 3 then
sequential statements;
else
sequential statements;
end if;

Chu - Chapter 5

Chu - Chapter 5

IF Statement Example

architecture if_arch of mux4 is

begin
process (a,b,c,d,s)
begin
if (s="00") then input output
X <= a; S X
elsif (s="01")then
x <= b; 00 a
elsif (s="10") then 01 b
X <= c; 10 c
else 11 d
x <= d;
end if;
end process;
end if_arch;
Binary Decoder Example
architecture if_arch of decoder4 is
begin
process (s)
begin
if (s="00") then input output
x <= "0001";
elsif (s="01")then S x
x <= "0010";
elsif (s="10")then 00 0001
x <= "0100"; 01 0010
else 10 0100
x <= "1000"; 11 1000

end if;

end process;
end if_arch;

Chu - Chapter 5

4-to-2 Priority Encoder Example

architecture if_arch of prio_encoder42 is

begin
process (r)
begin input output
if (r(3)=’1’) then r code active
code <= "11";
elsif (r(2)=’1)then l-—— 11 1
code <= "10"; 01 —— 10 1
elsif (r(1)=’1’) then 001- 01 1
code <= "O1"; 0001 00 1
else 0000 00 0
code <= "00";
end if;
end process;
active <= r(3) or r(2) or r(1) or r(0);

end if_arch;

Sequential Statement Example

sig <= value_expr_1 when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_3 else

value_expr_n;
It can be written as

process (...)
if boolean_expr_1 then
sig <= value_expr_1;
elsif boolean_expr_2 then
sig <= value_expr_2;
elsif boolean_expr_3 then
sig <= value_expr_3;
else
sig <= value_expr_n;
end if;
end process

Chu - Chapter 5

Sequential Statement Example

Find the max of a, b, ¢

if (a > b) then
if (a > c) then

max <= a; — a>b and a>c
else
max <= c; — a>b and c>=a
end if;
else
if (b > c) then
max <= b; — b>=a and b>c
else
max <= c; — b>=a and c>=b
end if;
end if;

Two Conditional Signal Assignment Codes

signal ac_max, bc_max: std_logic;

a when (a > c) else c;
bc_max b when (b > c) else c;
max <= ac_max when (a > b) else bc_max;

ac_max

AN A
o

max <= a when ((a > b) and (a > c)) else
c when (a > b) else
b when (b > c) else
C;

10

Chu - Chapter 5

Incomplete Branch and Signal Assignment

* According to VHDL definition
— Only the “then” branch is required; “elsif” and “else” branches are
optional.
— Signals do not need to be assigned in all branches.

— When a signal is unassigned due to omission, it keeps the “previous
value” (implying “memory”).

Incomplete Branch Example

process (a,b) Implies:
begin
rocess ,b
if (a=b) then process (a,b)
begin
eq <= ’17; .
end if if (a=b) then
’ -)) .
end process; eq < 173
else
eq <= eq;
end if ;

end process

11

Chu - Chapter 5

Incomplete Branch Example Fix

process (a,b)

begin
if (a=b) then
eq <=)1>;
else
eq <= 707;
end if ;

end process

Incomplete Signal Assignment

process (a,b)
begin
if (a>b) then
gt <= ’1’;
elsif (a=b) then
eq <= ’17;
else
1t <= ’17;
end if;
end process;

12

Chu - Chapter 5

Incomplete Signal Assignment Fixes

process (a,b)

begin

if (a>b) then
gt <= ’17;
eq <= ’07;
1t <= ’07;

elsif (a=b) then
gt <= ’O’;
eq <=)1:;
1t <= ’07;

else
gt <= ’O’;
eq <= ’07;
1t <= 17,

end if;

end process;

process (a,b)

begin

gt <= ’07;

eq <=¢ ’07;

1t <= ’0’;

if (a>b) then
gt <= ’17;

elsif (a=b) then
eq <= ’17;

else
1t <= ’17;

end if;

end process;

Conceptual Implementation

» Same as the conditional signal assignment statement if the IF
statement consists of

— One output signal.

— One sequential signal assignment in each branch.

* Multiple sequential statements can be constructed recursively.

13

Example

if b?olean_expr then Valle.
sig_a <= value_expr_a_1l; expr_a_1

sig_b <= value_expr_b_1 F sig_a
else value_
sig_a <= value_expr_a_2; expr_a_2
sig_b <= value_expr_b_2;
end if;
value_
expr_b_1 I~
F sig_b
value

expr_b_2

boolean_
exp

th (B8 (A

Example Code

if boolean_expr_1 then
if boolean_expr_2 then
signal_a <= value_expr_1;
else
signal_a <= value_expr_2;
end if;
else
if boolean_expr_3 then
signal_a <= value_expr_3;

else
signal_a <= value_expr_4;
end if;
end if;

Chu - Chapter 5

Chu - Chapter 5

Conceptual Implementation

then branch
expression

else branch
expression

boolean_ boolean_
exp_1 exp_1

Case Statement

Syntax;

Examples;

Comparison to selected signal assignment statement;
Incomplete signal assignment;

Conceptual implementation.

15

Chu - Chapter 5

Case Statement Syntax

case case_expression is
when choice 1 =>
sequential statements;
when choice 2 =>
sequential statements;

when choice n=>
sequential statements;

end case;

Example: 4-to-1 Mux

architecture case_arch of mux4 is

begin
process (a,b,c,d,s)
begin
case s is input
when "00" => s
x <= a;
when "01" =>
v < b 00
when "10" => 01
X <= c;].O
when others =>
I Il
end case;

end process;
end case_arch;

output
X

0o T e

16

Chu - Chapter 5

Example: 2-to-2? Binary Decoder

architecture case_arch of decoder4d is

begin
procl:
process (s) _
begin input output
case s is S X
when "00" => -
x <= "0001"; 00 0001
when "O1" => 01 0010
x <= "0010"; 10 0100
when "10" => 11 1000
x <= "0100"; -
when others =>
x <= "1000";

end case;
end process;
END case_arch;

Example: 4-to-2 Priority Encoder

architecture case_arch of prio_encoder42 is
begin
process (r)
begin
case r is
when "1000"["1001"["1010"|"1011"]
"1100"|"1101"["1110" | " 1111 "
code <= "11";
when "0100"["0101"["0110"|"0111" =>

|
A\

code <= "10"; input output
when "0010"["0011" => r code active
code <= "O01"; l——— 11 1
when others => 01-—— 10 1
code <= "00"; 001- 01 1
end case; 0001 00 1
0000 00 0

end process;
active <= r(3) or r(2) or r(1) or r(0);
end case_arch;

17

Chu - Chapter 5

Comparison to Selected Signal Assignment

» Two statements are the same if there is only one output signal
in case statement.

» (Case statement is more flexible.

» Sequential statements can be used in choice branches.

Example

with sel_exp select
sig <= value_expr_1 when choice_1,
value_expr_2 when choice_2,
value_expr_3 when choice_3,

value_expr_n when choice_n;
[t can be rewritten as:

case sel_exp Iis
when choice_1 =>
sig <= value_expr_1;
when choice_2 =>
sig <= value_expr_2;
when choice_3 =>
sig <= value_expr_3;

when choice_n =>
sig <= value_expr_n;
end case;

18

Chu - Chapter 5

Incomplete Signal Assignment

* According to VHDL definition

— Signals do not need to be assigned in all choice branch.

— When a signal is unassigned, it keeps the “previous value” (implying
“memory”).

Incomplete Signal Assignment

process (a)
case a 1is
when "100"["101"["110"[" 111" =>
high <= ’17;
when "O010"|"O011" =>
middle <= ’17;
when others =>
low <=’17;
end case;
end process;

19

Chu - Chapter 5

Incomplete Signal Assignment — Fix #1

process (a)
case a is
when "100"|"101"|"110"|"111" =>
high <= ’17;
middle <= ’07;
low <= ’0’;
when "O10"["O11" =>
high <= ’07;
middle <= ’17;
low <= ’07;
when others =>
high <= ’0’;
middle <= ’07;
low <= ’17;
end case;
end process;

Incomplete Signal Assignment — Fix #2

process (a)
high <= ’0’;
middle <= ’0’;
low <= ’07;
case a is
when "100"|["™101"|"110"["111" =>
high <= ’17’;
when "010"[|"O11" =>
middle <= ’17;
when others =>
low <=’17;
end case;
end process;

20

Chu - Chapter 5

Conceptual Implementation

+ Same as selected signal assignment statement if the case
statement consists of

— One output signal.
— One sequential signal assignment in each branch.

* Multiple sequential statements can be constructed recursively.

Conceptual Implementation - Example

case case_exp 1is
when cO =>
sig_a <= value_expr_a_0;
sig_b <= value_expr_b_0;
when c1 =>
sig_a <= value_expr_a_1;
sig_b <= value_expr_b_1;
when others =>
sig_a <= value_expr_a_n;
sig_b <= value_expr_b_n;
end case;

21

Chu - Chapter 5

Conceptual Implementation - Example

value_
expr_a_1

value_
expr_a_0

value_
expr_b_n

value_
expr_b_1

value_
expr_b_0

HE

c4
c3
c2
cl
c0

c4
c3
c2
cl

caes_exp

()) eheaen

sig a

sig_b

Simple For Loop Statement

VHDL provides a variety of loop constructs.

Only a restricted form of loop can be synthesized.

Syntax of simple for loop

for index in loop_range loop

sequential statements;

end loop;

loop_range must be static.

Index assumes value of loop_range from left to right.

22

Chu - Chapter 5

For Loop Example — Bit-wide XOR

library ieee;
use ieee.std_logic_1164. all;

entity wide_xor is
port(
a, b: in std_logic_vector (3 downto 0);
y: out std_logic_vector (3 downto 0)
);

end wide_xor;

architecture demo_arch of wide_xor is

constant WIDTH: integer := 4;
begin

process(a, b)

begin

for i in (WIDTH-1) downto O loop
y(i) <= a(i) xor b(i);
end loop;
end process;
end demo_arch;

For Loop Example — Reduced XOR

library ieee;
use ieee.std_logic_1164.all;

entity reduced_xor_demo is
port(
a: in std_logic_vector (3 downto 0);
y: out std_logic
)

end reduced_xor_demo;

architecture demo_arch of reduced_xor_demo is

constant WIDTH: integer := 4;
signal tmp: std_logic_vector (WIDTH-1 downto 0);
begin
process (a, tmp)
begin
tmp (0) <= a(0); — boundary bit

for i in 1 to (WIDTH-1) loop
tmp (i) <= a(i) xor tmp(i-1);
end loop;
end process;
y <= tmp(WIDTH-1);
end demo_arch;

23

Chu - Chapter 5

Conceptual Implementation

* “Unroll” the loop.

* For loop should be treated as “shorthand” for repetitive

statements.
* E.g., bit-wise xor

y(3) <=
y(2) <=
y(1) <=
y(0) <=

a(3)
a(2)
a(1l)
a(0)

Xor
Xor
Xor
Xor

b(3);
b(2);
b(1);
b (0);

Reduced XOR Example

tmp (0) <=
tmp (1) <=
tmp (2) <=
tmp (3) <=
y <= tmp(

a(0);

a(1) xor tmp(0);
a(2) xor tmp(1);
a(3) xor tmp(2);

3);

24

Chu - Chapter 5

Synthesis of Sequential Statements

* Concurrent statements

— Modeled after hardware.

— Have clear, direct mapping to physical structures.
* Sequential statements

— Intended to describe “behavior”.

— Flexible and versatile.

— Can be difficult to be realized in hardware.

— Can be easily abused.

Conclusion

¢ Think hardware!!

* Designing hardware is not converting a C program to a VHDL

program.

25

