A Brief Introduction to Logic

Professor Dirac, a famous Applied Mathematician-Physicist, had a horse shoe over his desk. One day a student asked if he really believed that a horse shoe brought luck. Professor Dirac replied, "I understand that it brings you luck if you believe in it or not."¹

A proposition is a statement that has a truth value, i.e. a statement that is either true or false. If p and q represent propositions, we can form the following additional propositions: p or q, p and q, not p, if p then q, p if and only if q.

p	q	p or q	p and q	not p	if p then q	p if and only if q
Τ	Т	Т	Т	F	Т	Т
Т	F	Т	F	F	F	F
F	Т	Т	F	Т	Т	F
F	F	F	F	Т	Т	Т

These compound propositions have the following truth values:

The following statements mean the same thing:

if p then q p implies q p only if q p is sufficient for q q is necessary for pq if p

The following statements mean the same thing:

p if and only if qp is necessary and sufficient for q

Statements that have identical truth values are said to be logically equivalent. For example, "p if and only if q" is logically equivalent to "if p then q and if q then p."

The statement "if p then q" is called an *implication*. The *converse* of this implication is "if q then p", the *inverse* is "if not p then not q," and the *contrapositive* is "if not q then not p."

Example 1 Find the contrapositive of the statement "if x = 2 then $x^2 = 4$."

Theorem 1 An implication and its contrapositive are logically equivalent.

Theorem 2 The following pairs of statements are logically equivalent:

¹http://www.naturalmath.com/jokes/joke9.html

Statement 1	Statement 2
not(not p)	p
$not (p \ or \ q)$	not p and not q
not $(p and q)$	not p or not q

The phrases "for each x," "for all x," and "for every x" are called *universal quantifiers*. Another type of quantifier is the *existential quantifier*, e.g., "there exists x," "for some x", and "there is an x."

Example 2 Discuss the following:

The Daily News published a story saying that one-half of the MP (Members of Parliament) were crooks. The Government took great exception to that and demanded a retraction and an apology. The newspaper responded the next day with an apology and reported that one-half of the MPs were not crooks.

Example 3 Find the negation of each statement.

- 1. All mathematics teachers are good people.
- 2. Some people are lazy.
- 3. For every real number x, if x < 0 then $x^2 > 0$.
- 4. There exists a real number x satisfying $x^2 + x < 0$.

The symbol " \forall " represents the universal quantifier. Thus, $\forall x$ means "for all x." Similarly, the symbol " \exists " represents the existential quantifier, and $\exists x$ means "there exists x."

Exercises

- 1. Give the precise negation of each of the following statements:
 - (a) All crows are black.
 - (b) All snakes are not poisonous.
 - (c) Some problems are hard.
 - (d) For all x, if f(x) > 0 then $x + x^2 < 1$.
- 2. Give the contrapositive of each statement.
 - (a) All crows are black. Hint: First write this in the "if...then" form.
 - (b) If $x^2 + 1 < 1$ then x is not a real number.
 - (c) A sufficient condition for getting good grades is to be a genius.
- 3. Give counterexamples to show that the following are false.
 - (a) All animals are carnivorous.
 - (b) For all integers $n, n^2 + n + 41$ is prime.