Supplementary Problem on Riemann Sums

Approximate $\int_{1}^{3} \sqrt{9-x^{2}} d x$ using Riemann sums and subintervals of equal length.

1. Use 20 subintervals, and select c_{i} as the left endpoint of $\left[x_{i-1}, x_{i}\right]$.
2. Use 40 subintervals, and select c_{i} as the right endpoint of $\left[x_{i-1}, x_{i}\right]$.
3. Use 80 subintervals, and select c_{i} as the midpoint of $\left[x_{i-1}, x_{i}\right]$.
4. Draw a graph of the area represented by this integral.
