Approximate $\int_{1}^{3} \sqrt{9-x^2} \, dx$ using Riemann sums and subintervals of equal length.

- 1. Use 20 subintervals, and select c_i as the left endpoint of $[x_{i-1}, x_i]$.
- 2. Use 40 subintervals, and select c_i as the right endpoint of $[x_{i-1}, x_i]$.
- 3. Use 80 subintervals, and select c_i as the midpoint of $[x_{i-1}, x_i]$.
- 4. Draw a graph of the area represented by this integral.