
;---
;
; Programmer : Larry Aamodt
;
; File name : hw10_help.s
; Class : CPTR-215
; Language : ARM assembly
; Assembler : Keil
; Target MCU : NXP LPC-2148
; Date Written : 10/27/12
; change history:
;
; Description : Program fragments to demonstrate funcionality needed
; for HW #10
;
; Inputs :
;
; Outputs :
;
; NOTES: In the program for HW10 you will need to initialize
; a register with the starting address for the source
; array that contains the string, initialize a register
; with the address of the destination array, and set a
; register to zero that will be a counter of the number
; of characters transferred (note that the byte at the
; end of the string doesn't need to be counted. It is
; assumed to be there). Then you will enter a loop that
; reads a character from the source string, writes it to
; the destination, and updates pointers and counter.
;
; NOTE THAT THE HW DEFINITION ASKS YOU TO DESIGN THE
; PROGRAM WHICH MEANS CREATE A NS DIAGRAM OR FLOW
; CHART BEFORE WRITING THE PROGRAM CODE.
;---

;---
; CODE
;---

AREA myprogram, CODE, READONLY
ENTRY
EXPORT reset_handler

reset_handler

; HOW TO GET DATA FROM MEMORY, either ROM or RAM
Main LDR r1,=dataX ;load the address of dataX into register 1

LDR r2,[r1] ;load the contents of dataX into register 2
; note that r1 is being used as a pointer
; to dataX. dataX is a word and the pointer
; is a word, i.e. 32 bits.

LDR r1,=varB ;load the addrees of varB
LDRB r2,[r1] ;load the contents of varB into register 2

; note that varB is a byte size variable

LDR r1,=array1 ;load address of array1, an array of bytes
LDRB r2,[r1] ;load one byte into r2
ADD r1,r1,#1 ;increment r1, the pointer, to access the
 ; next byte in the array

; HOW TO STORE DATA INTO RAM
LDR r1,=varY ;load the address of varY
STR r2,[r1] ;store a word (32 bits) from r2 into memory

LDR r1,=varB ;load the address of varB
STRB r2,[r1] ;store a byte (the right 8 bits) from r2

; into memory at the address in r1

stop B stop

dataX DCD 128 ;create one word of data and initialize it
; to decimal 128 (could use hex 0x80)

array1 DCB "Jane",0 ;create an array of 4 bytes with the ascii
; characters Jane in it plus a 5th byte
; that has a numeric value of zero in it.

;---
; DATA
;---

AREA ram_data, DATA, READWRITE

array2 space 20 ;create an array of 20 bytes into which data
; can be written or then read.

varB DCB 0 ;create space for a byte size variable
varY DCD 0 ;create space for a word size variable.

;note that you can't place data into the RAM
;variables when you write the program. Only
;the program can place data into RAM when it
;is running.

END

;---

; End of file. Note: If you were to assemble this file you would get
; a warning on lines 81 and 86 stating:
; Added 3 bytes of padding
; This is normal and ok. I'll explain in class.

