## ENGR-325 Hw \#1

1) Show how op amps can be used to create an amplifier with a gain of +100 and an input impedance of 2.5 Kohms .
a) show how this can be done with a non-inverting configuration.
b) show how this can be done with an inverting configuration.
2) Resistance of a certain temperature sensor varies from 530 to 2400 ohms over the temperature range of interest. If this sensor is placed (as R2) in a voltage divider as shown with R1 equal to 500 ohms and 5 volts DC is applied, what is the range of voltages coming from the voltage divider?

3) Draw a graph of the output voltage versus sensor resistance from problem 2.
a) Does the voltage vary linearly with resistance?
b) Does the voltage decrease or increase with resistance increase?
c) If the sensor (R2) were swapped with resistor R1 does the output voltage increase or decrease as the sensor resistance increases?
4) A control system needs the average of temperature from three locations. Temperature sensors make the temperature information available as voltages V1, V2, and V3. Develop an op-amp circuit that outputs the average of these voltages. The input resistance for each input should be 10,000 ohms.
5) Modern sensors often produce an output voltage proportional to the affect being measured such as temperature or pressure. Such a sensor has an output impedance. With nothing attached to the sensor output terminals we can define its output as the open-circuit voltage. An electrical measuring instrument or amplifier has an input impedance. If the sensor is connected to a measuring instrument or amplifier loading can occur which means the output voltage is lower than the open-circuit voltage for the same temperature or pressure. Plot the ratio (measured-voltage)/(open-circuit-voltage) as the input impedance of the measuring device varies from 1:1 to 1:10,000 (just look at each order of magnitude). What value (i.e. ratio) of input impedance would be acceptable in a quality instrument?
6) Sensors sometimes create an output current, rather than voltage, that is proportional to the parameter being measured. Assume a pressure sensor creates an output that is 4 ma for zero (gage) pressure and 20 ma for 32 psi . Design a circuit that will convert this to a voltage where zero psi produces +4 volts and 32 psi produces +20 volts.
