ENGR-433 homework \#2 part a - due Monday

Note: In problems $1 \& 2$ below I will use an apostrophe to denote a complemented term. Thus the complement of X which is X bar would be denoted as X^{\prime}.

1) Reduce this expression to its simplest form using boolean laws. State the law used at each step: $\mathrm{F}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{CD}+\mathrm{BC}+\mathrm{A}^{\prime} \mathrm{C} \quad$ (Refer to the handout I gave you if needed)
2) Place the following function into a conventional 1's \& 0's K-map. Place the variables on the K-map axes in alphabetical order beginning with the vertical axis (like the K-map shown in problem 4 below): $\mathrm{W}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{ab}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{abc}+\mathrm{a} \mathrm{a}^{\prime} \mathrm{bc}+\mathrm{ab} \mathrm{c}^{\prime}$
3) Use conventional K-maps to find a minimal sum-of-products expression for the following logic functions: $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\operatorname{minterms}(1,3,5,6,7)$ and $\mathrm{G}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=$ minterms $(1,2,3,4,5,6,7,9,10,11,13)$. Recall that a minterm is a term that has all the variables in it. As in problem \#2, place the variables in alphabetical order on the map axis.
4) Loop out the entered variable K-map below and write the reduced function.

