
Notes for simulating digital circuits with ELDO
Input files used by ELDO, Transistor Scaling, Forces, and Plotting

rev 2
DA-IC and ELDO Files

Two files are used as input to ELDO: design_name.cir and design_name.spi that will hereafter be
referred to as a .cir or .spi file. The .cir contains ELDO commands that control simulation,
specify circuit nodes whose data will be displayed, establish forces on the inputs, etc. The .spi
file holds the circuit netlist and is read into the simulator with a .INCLUDE statement in the .cir
file.

The .cir file is re-written after you enter data or change settings in several of the menus accessed
via the simulation panel in da-ic. Thus while it could be edited with a text editor chances are it
will be overwritten as you prepare for simulation. However, from the simulation panel select
Options > Additional and the window shown in figure 1 below will open to allow additional
commands to be entered for insertion either at the start of or end of the .cir file. The commands
you enter will be remembered in a da-ic configuration file and thus anytime da-ic re-writes the
.cir file your commands will be included.

User action(s) that cause the .spi file to be written depend on how the user configures the
simulation environment. From the simulation panel select Session > Environment and the panel
shown in figure 7 of this document appears. Note the four Auto-Run Simulation Setup options
on the left. The last two that begin with Netlist cause the .spi file to be re-written every time a
simulation is run. Thus any edits you make to the .spi fill will be overwritten by the netlister and
your hard work of editing is lost. Thus I recommend the second option, i.e. Run Simulation and
Display Waveforms. Note however that you will have to click the Netlist button right above Run
Eldo on the simulation pallette to get a netlist to simulate with Eldo or get a netlist to edit.

Scaling

Transistor sizing (width and length) is specified in units of lambda in the schematics that are used
for both simulation and as input to schematic driven IC layout. Lambda dimensions are used in
the layout and so specifying widths and lengths in lambda works just fine. However, for
simulation, transistor sizes need to be in units of meters (or microns) to obtain correct
simulations. Thus lambda’s must be converted using the appropriate scaling factor.

Spice has a circuit description command named .SCALE (note the leading period) that can be
used to specify particular model parameters that need to be scaled and by how much. The syntax
of this command is (using a MOSFET as an example):

.SCALE M W .35 L .35 AD .123 PD .35 AS .35 PS .35
Where the first field after scale indicates the type of component who’s parameters will be scaled
(various formats are allowed to specify the intended component(s) subject to scaling. See the
Eldo User Manual). The M here indicates a MOSFET transistor (either N or P type). Following
the component type designator are data pairs composed of a parameter name and the scaling
factor for that parameter. The specified parameter will be multiplied by the scaling factor. For
example, a 5 lambda wide transistor has will have a 5 x .35 or 1.75um width.

The .SCALE command should be placed in the upper part of the Options > Additional window
as shown in figure 1 below.

Forces

Forces can be handled in one of two ways. The first way is using the graphical force manager
accessed from the simulation pallette button Forces > Manager which opens up the manager
window and various forces can be defined. However, if you don’t explicitly save your setup then
when you exit da-ic and start it up again the knowledge about your forces will be gone and you
have to create them again. To save your session, again from the Simulation pallette, select
Session > Save Session as Default and click yes when prompted about the sim_setup file already
existing (or you can do a save-as and create a unique instance of setup). When you restart daic in
the future select: Session > Restore Setup From and another pop-up box will ask to confirm
this. Answer yes. The forces defined in the previous session that you saved should now be
restored.

A second way to handle forces is to not define them via the Forces button on the simulation
pallette and instead place the appropriate statements in the Options > Additional window as
shown in the lower window of figure 1 below (pulse statements shown here)..

Figure 1 - Set Additional Commands window

Alternative Force Commands

When working with digital type circuits the pulsed voltage source is generally not useful if the
signal isn’t a single pulse or isn’t periodic. There are two other independent voltage sources that
work well for digital circuits where the input voltages can be represented by logic 0's or 1's.

Figure 2 below shows two pattern voltage sources that have been placed in the Additional
Commands window.. See the handout on SPICE netlist syntax for details of those sources.

The first pattern statement references patfile1 which is an ascii text file with the same
information that would be placed directly into the pattern command although for a long sequence
it is better to have it in a file. Here is the contents of pattfile1:

**** Pattern for the A input of a NAND2 gate
5, 0, 5n, 120p, 120p, 5n, 0101010

The pattern for the B input could also be specified to come from a file. However, only one
pattern can be contained in a single file.

Figure 2 Set Additional Commands - Pattern voltage sources shown

The second way that a pattern of 1's and 0's can be presented as input to the simulator is using a
.TVINCLUDE statement which specifies what is called a test_vector file.. This statement would
replace the other Force statements for this example circuit although you can use a mix of Force
statements and test vector inputs but not driving the same circuit node(s).

A test vector is a set of bits that represent multiple inputs of a digital circuit at a particular instant
of time and may include within the “vector” a set of bits that represent the outputs that should be
observed for the given inputs. A test vector file contains a list of vectors and a time at which
each vector should be applied to the circuit inputs. The simulator applies each vector and then
checks the output to see if outputs match the expected outputs. The simulation transcript will
contain a report about how many vectors didn’t match and the time stamp of when the match
failed. That allows long vector sequences, like going through all the bit combinations of data
that could be applied to an ALU and confirming that all combinations work. The vector file
could be generated with a script.

Figure 3 below shows the use of a .TVINCLUDE command and figure 4 a sample vector file.

NOTE: In figure 1 both PULSE type voltage sources and .TVINCLUDE test vector inputs to the
same input nodes is shown. It doesn’t work to drive an input with two sources at once. Use one
or the other. Also, the yellow box in figure 3 is extraneous. Ignore it.

Figure 3 Set Additional Commands - showing .TVINCLUDE

Example report text (from the .chi file) follows in figure 5.

The “Number of checkbus tested” means the number of test vectors including that at time = 0;

Figure 4 - Example test vector file.

Figure 5

Plotting Simulation Results

Specifying the circuit nodes that you wish to have plotted can be done via the da-ic graphical user
interface or by directly placing plot commends into the .cir file using the Set Additional
Commands window. See figure 1 for example plot commands. If you use the graphical interface
then also use Session > Save_Setup_as_Default to save your plotting definitions along with any
other commands you entered into the Set Additional Commands window..

Appendix

See the ELDO users manual (/home/classes/engr434/docs/eldo_ur2008.pdf) pages 885 to 891
regarding details of the .TVINCLUDE command and vector file format. See pages 319 to 321
regarding details of the PATTERN function.

Here is the example test vector file from the Eldo user manual but I don’t think it is correct for
the gate it claims to be testing. However, it is useful for defining the parts of the file:

Figure 6 - Excerpt from the Eldo User Manual

Figure 7 below shows the menu for set up control of when the .spi file is written (the first time)
or re-written additional times (overwriting any former version):

Figure 7 - Session > Setup Simulation Environment.

Figure 8 - NAND gate circuit used for illustration

Figure 9 - Waveforms, selected by the plot commands in
figure 1, generated by the pattern signal shown in figure 2.
The test vector file in figure 4 creates the same wave
forms.

