
1

Theoretical Effective Length Factor for Pinned-Fixed Column
by Louie L. Yaw

Walla Walla University
May 29, 2019

key words: buckling, column, pinned, fixed, effective length factor

1 Introduction

The theoretical effective length factor, k, for a pinned-fixed column is often reported incor-
rectly as 0.707 or 1/

√
2 in textbooks and across the internet. The correct value, rounded

to four digits, is k = 0.6992. It is likely that this number has at some time been rounded
to 0.7, then still others assume this comes from the common number

√
2/2 or cosine of 45

degrees. To set the record straight the fourth order differential equation of column buck-
ling is derived. Pinned-fixed boundary conditions are imposed upon the solution to the
differential equation. Finally, the effective length factor for a pinned-fixed column is found.
Although this solution is correctly found in some textbooks [5], all the steps and details are
not given. Hence, herein, it is shown that the correct theoretical value for the pinned-fixed
case is k = 0.6991556596428472 . . .

2 Relationship between curvature and strain

Consider a beam undergoing a lateral displacement as shown in Figure 1. From this beam
consider the differential element dx before and after deformation. The coordinate y is mea-
sured from the neutral axis of the beam. In the undeformed state the beam fiber at height
y has length

ds = dx = ρdθ. (1)

The above equation (1) results owing to the fact that in the undeformed state dx = ds and
in the deformed state the length of the differential element at the neutral axis is unchanged.
As a result dx = ρdθ. After deformation the beam fiber at height y has length

ds′ = (ρ− y)dθ. (2)

For small displacements and rotations the strain is change in length over original length.

ε =
ds′ − ds

ds
=

(ρ− y)dθ − ρdθ

ρdθ
=

−ydθ

ρdθ
=

−y

ρ
(3)

From (3), curvature 1/ρ, is related to strain as

1

ρ
=

−ε

y
(4)
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Figure 1: Lateral Deflection Curvature: (a) Undeformed differential element dx, (b) De-
formed differential element dx.

3 Moment curvature relation

For a homogeneous linear elastic material with modulus of elasticity, E, stress, σ, is related
to strain, ε, via Hooke’s law.

σ = Eε or ε =
σ

E
. (5)

Recall from basic mechanics of materials [3] that normal stress, σ, is related to moment
with y coordinate measured positive upwards from the neutral axis of the beam.

σ =
−My

I
(6)

Then combine (6) with (5) to get

ε =
−My

EI
. (7)

Next substitute (7) into (4) to obtain

1

ρ
= −−My

yEI
=

M

EI
. (8)

From a basic calculus textbook [4] curvature is shown to have the following formula

1

ρ
=

d2v
dx2

[1 + ( dv
dx
)2]

3

2

, (9)



3

where v(x) is the equation of the curve for which the curvature is being calculated. For our
beam, v, is the lateral displacement of the beam. Now, for small displacements and small
rotations dv

dx
≈ 0 so that (9) becomes

1

ρ
=

d2v

dx2
. (10)

Finally, substituting (10) into (8) yields

M

EI
=

d2v

dx2
. (11)

4 Derivation of fourth order differential equation of

buckling

Often column buckling problems are solved by deriving and solving a second order differen-
tial equation. However, the fourth order differential equation of buckling is more intuitive
when trying to understand how to apply boundary conditions. In particular, the bound-
ary conditions for the pinned-fixed case are easier to understand by using the fourth order
differential equation.

To begin consider the case of a column with axial load, P , distributed load, w(x), and
lateral deflection, v(x), as shown in Figure 2. A differential element dx is cut from the
deformed shape of the column. Equilibrium equations are written for the differential element
as follows:

+ ↑
∑

Fy = 0; V − wdx− (V + dV ) = 0 ⇒ dV = −wdx ⇒ dV

dx
= −w. (12)

+ 	

∑

Mo = 0;Pdv−V dx+
wdx2

2
−M+M+dM = 0 ⇒ Pdv−V dx+dM = 0, (13)

where the last expression in (13) arises since higher order terms, dx2, go to zero faster than
other terms in the limit as dx → 0.

Next use (13) and divide all terms by dx to get

P
dv

dx
+

dM

dx
= V. (14)

Then use (11) in (14) so that

P
dv

dx
+

d

dx

(

EI
d2v

dx2

)

= V. (15)

For constant column material and cross-section (15) becomes

P
dv

dx
+ EI

d3v

dx3
= V. (16)

Substituting (16) into (12)

P
d2v

dx2
+ EI

d4v

dx4
= −w. (17)
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Figure 2: Freebody Diagram of Differential Element

Dividing through with EI and rearranging yields

d4v

dx4
+

P

EI

d2v

dx2
=

−w

EI
. (18)

It is possible to consider cases of buckling that include the effect of a nonzero w applied
laterally to the column. However, for the purposes herein it is appropriate to assume w = 0.
As a result,

d4v

dx4
+

P

EI

d2v

dx2
= 0. (19)

Finally, for convenience, setting λ2 = P
EI

and substituting into (19) yields

d4v

dx4
+ λ2

d2v

dx2
= 0. (20)

Equation (20) has the general solution

v = A sinλx+ B cosλx+ Cx+D. (21)

5 Buckling of a pinned-fixed column

The fourth order differential equation (20) and the accompanying solution (21) are a firm
basis for determining the theoretical buckling load of columns with various boundary condi-
tions. In particular, the case of a pinned-fixed column, Figure 3, has the following boundary
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Figure 3: Pinned-Fixed Column With Buckled Shape Shown

conditions and corresponding equations using the general solution (21):

At x = 0, v = 0 ⇒ B +D = 0

At x = 0,
dv

dx
= 0 ⇒ Aλ+ C = 0

At x = L, v = 0 ⇒ A sinλL+B cosλL+ CL+D = 0

At x = L,
d2v

dx2
= 0 ⇒ −Aλ2 sinλL− Bλ2 cosλL = 0.

(22)

The four equations in (22) may be written in matrix form








0 1 0 1
λ 0 1 0

sinλL cosλL L 1
−λ2 sinλL −λ2 cosλL 0 0























A
B
C
D















=















0
0
0
0















. (23)

The trivial solution of (23) is A = B = C = D = 0, which is the uninteresting case of zero
lateral displacement and hence no buckling. The nontrivial solution is for the determinant
of the coefficient matrix to equal zero. In order to take the determinant of a 4x4 matrix
a cofactor expansion [1] is required, in this case about the first row. Recall that these
operations are multiplied by relevant signs as shown in the following matrix:









1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1









. (24)

Hence, taking the determinant of the coefficient matrix about the first row yields

0 + (−1)(−λ2 sinλL) + 0 + (−1)((−λ2 cosλL sinλL+ λ3L cosλL+ λ2 cosλL sinλL) = 0

⇒λ2 sinλL+ λ2 cosλL sinλL− λ3L cosλL− λ2 cosλL sinλL = 0

⇒ sinλL+ cosλL sinλL− λL cosλL− cosλL sinλL = 0

⇒ tanλL+ sinλL− λL− sinλL = 0

⇒ tanλL = λL.

(25)
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The final expression of (25) is a transcendental equation in terms of λL. The lowest nonzero
value that satisfies (25) is

λL = 4.4934094579090 . . . (26)

Further, note that

λ =
4.4934094579090

L
(27)

Now recall that
P

EI
= λ2 =

(

4.4934094579090

L

)2

. (28)

Upon rearranging (28) it is found that

P =
EI(4.4934094579090)2

L2
. (29)

To find the effective length factor, k, set (29) equal to the standard form for Euler critical
buckling load and solve for k, that is

Pcr =
π2EI

(kL)2
=

EI(4.4934094579090)2

L2
. (30)

After some algebra solving for k it is found that

k =
π

4.4934094579090
= 0.6991556596428. (31)

The above value is consistent with the value provided in the Theory of Elastic Stability by
Timoshenko and Gere [5]. As a result the correct critical buckling load and effective length
factor for the pinned fixed case is

Pcr =
π2EI

(0.6992L)2
and k = 0.6991556596428. (32)

6 Conclusion

A derivation of the theoretical critical buckling load and effective length factor for a pinned
fixed column is provided. It is shown that the effective length factor is k = 0.699 . . . rather
than 0.707 or 1/

√
2, which is often erroneously printed in textbooks or on the internet.

Furthermore, in the process the fourth order differential equation of buckling for columns
was found. This differential equation is very useful for examining all of the other standard
column buckling cases, such as pinned pinned, fixed fixed, fixed free, fixed pinned with sway,
and fixed fixed with sway, as well. These other standard theoretical cases are presented as a
useful reference in Figure 4, which includes information adapted from [2].
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Figure 4: Theoretical Column Buckling Information for Various Boundary Conditions


