
1

Surveying - Traverse Closure
by Louie L. Yaw

Walla Walla University
June 27, 2019

key words: traverse, closure, departures, dot product, angles, coordinates, surveying

1 Introduction

In surveying it is often necessary to do a traverse closure. Basically, a polygon is surveyed
in the field. The polygon contains n sides. Each polygon side has length, Li. Between each
side is an interior angle αi. In general, the surveyed lengths and interior angles contain
error. The sum of the interior angles should be (n− 2)180, however, in general the surveyed
angles do not exactly sum to this value. Hence, the angles must be adjusted. Based on these
corrected angles the lengths of the polygon sides have x components and y components.
Since the polygon is closed the sum of x components must equal zero and the sum of y
components must equal zero. In general these sums are not exactly equal to zero. Hence,
the x and y components are adjusted to account for the error. When both sum of angles
and sums of components equal the required values the traverse closure is done. The result is
an adjusted polygon that has angles and lengths that are geometrically consistent with the
closed polygon. This article describes a process by which this may be accomplished using a
MATLAB script.

2 An example problem

Consider the polygon of Figure 1 with surveyed lengths and interior angles shown. Notice
the polygon contains number of sides n = 7, lengths Li, interior angles αi, exterior angles βi,
nodes i = 1 to 7, and node coordinates xi, yi. It is important to recognize that the ensuing
algorithms are based on the sides, angles, nodes, being ordered as shown in counterclockwise
order. Furthermore, to start, side 1 is chosen to coincide with the x-axis of a Cartesian
coordinate system with node n at the origin. In the following section the steps to accomplish
a traverse closure are provided for the example problem. The only starting inputs necessary
are the side lengths, Li, and interior angles, αi.

3 Traverse Closure

Each step in the traverse closure process is provided in its own subsection below.

2

L2 = 5.35L7 = 7.8

L3 = 6.75

α7 = 89.5◦

L1 = 7.9

L4 = 5.65

L5 = 13.2

L6 = 8.0

α1 = 128.5◦

α2 = 129
◦

α3 = 211
◦

α6 = 194
◦

α5 = 80.5◦
α4 = 70.5◦

1
7

2

6

3

4
5

β1

β2

β3

β4

β5

β6

β7
x

y

Figure 1: Example problem surveyed polygon (not to scale)

3

3.1 Adjusting the angles, αi

For an n sided polygon the sum of the interior angles in degrees should equal (n− 2) ∗ 180◦.
For the example problem,

n
∑

i=1

αi = (128.5 + 129 + 211 + 70.5 + 80.5 + 194 + 89.5) = 903◦. (1)

The sum of angles for the example 7 sided polygon should be

(n− 2) ∗ 180 = (7− 2) ∗ 180 = 900◦. (2)

Clearly, the error is

error = (n− 2)180−
n

∑

i=1

αi = 3◦. (3)

To adjust the angles add error/n to each angle. This is shown in Table 1.

i Angle, αi Correction Adjusted αi

1 128.5 -0.42857 128.071
2 129.0 -0.42857 128.571
3 211.0 -0.42857 210.571
4 70.5 -0.42857 70.071
5 80.5 -0.42857 80.071
6 194.0 -0.42857 193.571
7 89.5 -0.42857 89.071

Table 1: Adjusting angles, αi

3.2 Calculate angles, βi

Notice each angle βi is found by taking 180◦ − αi, where the updated adjusted αi are used.
The result is a positive angle if βi is outside the polygon or is a negative angle if βi is inside
the polygon as seen in Figure 1. That is

βi = 180− αi. (4)

The resulting values of βi are shown in Table 2.

3.3 Calculate angles, γi

Polygon side i is described as pointing from node i− 1 to node i. The angular direction the
side points, counterclockwise from the positive x-axis, is a calculated angle, γi.

γi =
i

∑

k=1

βk (5)

4

i Angle, βi

1 51.9286
2 51.4286
3 -30.5714
4 109.9286
5 99.9286
6 -13.5714
7 90.9286

Table 2: Angles, βi

Notice γi is simply the sum of all βk values up to and including node i. The angle γi provides
the polar coordinates direction of line segment i of the polygon. Notice that these angles
always have value between 0 and 360◦ regardless of the number of polygon sides. In fact,
the correct value of γn should always be 360◦ (after prior αi adjustments are made). Table 3
contains the resulting γi values for the example problem.

i Angle, γi
1 51.9286
2 103.3571
3 72.7857
4 182.7143
5 282.6429
6 269.0714
7 360.0000

Table 3: Angles, γi

3.4 ”Departures” (components) for each polygon side i

Having this angle it is easy to calculate the ”departures” (components) dxi and dyy in
rectangular cartesian coordinates for polygon side i. These ”departures” have positive or
negative signs depending on the direction polygon side i is pointing. Since polygon side 1 is
chosen to point in the x-direction it has departures dx1 = L1 and dy1 = 0. For all remaining
sides the departures (Table 4) are calculated as

dxi = Li cos γi−1

dyi = Li sin γi−1.
(6)

3.5 Departure errors

If a polygon is closed then the sum of all x departures (positive and negative ones) should
equal zero, and similarly for y departures. If they do not sum to zero then the final sum is

5

i dxi dyi
1 7.9000 0.0000
2 3.2990 4.2117
3 -1.5594 6.5674
4 1.6721 5.3969
5 -13.1852 -0.6251
6 1.7510 -7.8060
7 -0.1264 -7.7990

Table 4: Departures

the error. That is

n
∑

i=1

dxi = errordx

n
∑

i=1

dyi = errordy.

(7)

3.6 Adjustment of departures

The dx and dy departures are adjusted to account for the departure errors. It is assumed that
the errors are disbursed amongst the departures in proportion to the length of the departure.
The adjusted departures (Table 5) are calculated according to the following formulas:

dxi = dxi −

(

|dxi|
∑n

i=1
|dxi|

)

errordx

dyi = dyi −

(

|dyi|
∑n

i=1
|dyi|

)

errordy.

(8)

i dxi dyi
1 7.9667 0.0000
2 3.3269 4.2188
3 -1.5462 6.5784
4 1.6862 5.4059
5 -13.0739 -0.6241
6 1.7658 -7.7930
7 -0.1253 -7.7860

Table 5: Adjusted Departures

6

3.7 Calculation of nodal coordinates

The coordinates for each node (Table 6) are calculated from the adjusted departures accord-
ing to the following formulas.

xi =
i

∑

k=1

dxk

yi =
i

∑

k=1

dyk.

(9)

i xi yi
1 7.9667 0.0000
2 11.2935 4.2188
3 9.7473 10.7971
4 11.4335 16.2030
5 -1.6404 15.5790
6 0.1253 7.7860
7 0.0000 0.0000

Table 6: Nodal Coordinates

3.8 Inferred angles, δi

From the adjusted departures the nodal coordinates are found. The nodal coordinates in
turn infer (or imply) the angles, δi. It is now necessary to calculated the inferred angles and
see if their sum agrees with the correct sum of interior angles for a polygon with n sides.
Hence, δi values are calculated from the nodal coordinates. This is accomplished as follows.

For a particular node i two line segments emanate from the node. From the coordinates
construct vectors along each of the line segments. Each vector is constructed with its tail
located at node i. For example, for node 2.

v = (x1 − x2)i+ (y1 − y2)j = −3.3269i− 4.2188j

w = (x3 − x2)i+ (y3 − y2)j = −1.5462i+ 6.5784j.
(10)

For this case, for node 2, the inferred angle(s) between the vectors are

δ2a = arccos
v •w

vw
= 128.5139◦

δ2b = 360− δ2a = 360− 128.5139 = 231.4861◦.
(11)

Of the two answers the one that is closest to the most recently calculated α2 = 128.5139 is
the correct value. Hence, in this case the final inferred angle is δ2 = 128.5139. This process is
easily accomplished algorithmically within a MATLAB script for all inferred angles. Finally,
the inferred δi angles are the new αi values. Therefore, the αi are set equal to the δi. As a
result, in Table 7 the final inferred αi values are shown.

7

i Angle, αi = δi
1 128.2589
2 128.5139
3 210.5508
4 69.9435
5 79.9661
6 193.6889
7 89.0777

Table 7: Inferred Angles, αi = δi

3.9 Calculated side lengths

The side lengths (Table 8) of the polygon are easily calculated by the most recent (adjusted)
departures. This is accomplished according to the Pythagorean formula

Li =
√

dx2

i + dy2i . (12)

i Li

1 7.9667
2 5.3727
3 6.7576
4 5.6628
5 13.0888
6 7.9906
7 7.7870

Table 8: Polygon side lengths, Li

3.10 Comments

The angles of Table 7 sum to 900◦ as they should. If the angles are used as before to
eventually calculate the x and y departures it is found that the departure errors are very
small to machine precision. It is evident that the procedure above gives direct results and
no iteration is required.

3.11 MATLAB script

As indicated the above procedure is amenable to solution in a computer. A MATLAB
script (traverse.m) and a function (dotproductangle.m) are included with this paper in the
appendix. These scripts quickly and easily complete the traverse closure procedure when
given the appropriate input.

8

4 Conclusion

A procedure for traverse closure is presented. MATLAB scripts are provided to automate
the process in a computer. No iterations are required and satisfactory results to machine
precision are obtained.

5 Appendix

5.1 MATLAB script traverse.m

%traverse1.m by Louie L. Yaw 6/25/19

%Script to find the corrected angles and lengths to do a traverse closure

%for surveying.

%Bryc Cole Test case for verification

%Begin user input

n=3; %Number of traverse lengths

%Initialize variables

alpha=zeros(n,1);%interior polygon angles

length=zeros(n,1);

%Input of surveyed values (in counterclockwise order)

%alpha=[67;57.317;55.683];

%length=[147.65;147.23;163.19];

alpha=[67.0882;56.8906;55.8375];

length=[148.26;146.78;163.0327];

%Begin calculations

%Check angles residual

aResid=(n-2)*180-sum(alpha);

%Correct the angles

acorrect=(aResid/n)*ones(n,1);

alpha=alpha+acorrect;

%Assume Line1 points along x direction, (x=East West, y=North South)

dx=zeros(n,1);

dy=zeros(n,1);

%Find beta angles

beta=zeros(n,1);%in degrees

for i=1:n

beta(i)=180-alpha(i);

end

9

%Find gamma angles for each line i

gamma=zeros(n,1);%in degrees

for k=1:n

for i=1:k

gamma(k)=gamma(k)+beta(i);

end

end

%Find the x and y departures

dx(1)=length(1);%since length 1 is entirely in the x direction and dy(1)=0;

for i=2:n

dx(i)=cos(pi/180*gamma(i-1))*length(i);

dy(i)=sin(pi/180*gamma(i-1))*length(i);

end

%Find the x and y departure errors

dxerror=sum(dx);

dyerror=sum(dy);

%Adjust the x and y departures

dxabssum=sum(abs(dx));

dyabssum=sum(abs(dy));

for i=1:n

dx(i)=dx(i)-abs(dx(i))/dxabssum*dxerror;

dy(i)=dy(i)-abs(dy(i))/dyabssum*dyerror;

end

%Find coordinates of all points

x=zeros(n,1);

y=zeros(n,1);

for i=1:n

if i==1

x(i)=dx(i);

y(i)=dy(i);

else

x(i)=dx(i)+x(i-1);

y(i)=dy(i)+y(i-1);

end

end

%Find the inferred angles, delta, based on coordinates and dot product

delta=zeros(n,1);

for i=1:n

if i==1

10

delta(i)=dotproductangle(x(n),y(n),x(i),y(i),x(i+1),y(i+1));

elseif i==n

delta(i)=dotproductangle(x(n-1),y(n-1),x(i),y(i),x(1),y(1));

else

delta(i)=dotproductangle(x(i-1),y(i-1),x(i),y(i),x(i+1),y(i+1));

end

end

%Due to ambiguity of cos angles, correct the inferred angle, delta, to be

%one closest with corrected angle, alpha

for i=1:n

a1=delta(i);

a2=360-delta(i);

r1=abs(a1-alpha(i));

r2=abs(a2-alpha(i));

if r1<r2

delta(i)=a1;

else

delta(i)=a2;

end

end

alpha=delta;

%Find new lengths

for i=1:n

if i==1

length(i)=sqrt((x(n)-x(i))^2+(y(n)-y(i))^2);

else

length(i)=sqrt((x(i-1)-x(i))^2+(y(i-1)-y(i))^2);

end

end

display(’Output’)

alpha

length

5.2 MATLAB script dotproductangle.m

%dotproductangle.m

%by Louie L. Yaw 6-26-19

%Function find dotproductangle given input

%

%Construct dotproductangle function === dotproductangle(xnm1,ynm1,xn,yn,xnp1,ynp1)

%

%where,

%

%xnm1=coordinate x_n-1

11

%ynm1=coordinate y_n-1

%xn=coordinate xn at which the interior angle is to be determined

%yn=coordinate yn at which the interior angle is to be determined

%xnp1=coordinate x_n+1

%ynp1=coordinate y_n+1

function angle=dotproductangle(xnm1,ynm1,xn,yn,xnp1,ynp1)

%Create dotproductangle function

L1=sqrt((xn-xnm1)^2+(yn-ynm1)^2);

L2=sqrt((xn-xnp1)^2+(yn-ynp1)^2);

v1=[xnm1-xn;ynm1-yn];

v2=[xnp1-xn;ynp1-yn];

angle=acos(v1’*v2/(L1*L2))*180/pi;%in degrees

%End of the function dotproductangle.m

