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1 Introduction

From a computational point of view hardening is provided either by isotropic hardening,
kinematic hardening or by some combination of the two. It is observed from real life exper-
iments with metals that kinematic hardening takes place when metals are loaded past the
yield point. This is often called the Bauschinger effect. The Bauschinger effect essentially
causes the center of the yield surface to move relative to the stress space origin when plastic
flow takes place. Hence, unlike isotropic hardening, kinematic hardening can result in a work
hardened material that has a different yield stress magnitude in tension than the yield stress
magnitude in compression. Most polycrystalline metal materials, for example, do exhibit
this kind of behavior. It is assumed that the reader has read the content contained in [8].
The current article is an extension of 1D plasticity with isotropic hardening [8] and provides
additional theory and details necessary to include kinematic hardening.

2 Definitions

Brief definitions of the most important terminology are as follows. For kinematic hardening
a hardening modulus, H, is used to characterize the rate of hardening per unit plastic
flow. This is determined from experimentation and in a finite element implementation the
hardening modulus is provided as input. To keep track of the center of the yield surface an
internal variable, q, called back stress is created. Otherwise, the definitions of all variables
are the same as those presented in [8] for 1D plasticity with isotropic hardening.
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3 1D Plasticity w/ Isotropic and Kinematic Hardening

The algorithmic pieces of one dimensional plasticity with a general expression for isotropic
and kinematic hardening is presented next. The derivations and notation closely follows that
given by Simo and Hughes[6].

3.1 Derivation of Elasto-Plastic Tangent Modulus

As usual the modulus of elasticity is E, the equivalent plastic strain is α and the total strain
is defined as

ε = εp + εe. (3.1)

Stress is linear elastic when f < 0 and is calculated as

σ = Eεe = E(ε− εp) (3.2)

the flow rule and back stress rate (simple Ziegler’s rule), respectively, are assumed as

ε̇p = γsign(σ − q). (3.3)

q̇ = Hε̇p = γHsign(σ − q). (3.4)

The yield condition is defined as follows:

f(σ) = |σ − q| −G(α) (3.5)

,where G(α) is a yield stress function (see [8]) which includes the type of isotropic hardening
and is a function of α. The customary Kuhn-Tucker conditions apply (γ ≥ 0, f(σ) ≤ 0, and
γf(σ) = 0). If f(σ) is to be zero the consistency condition requires that γḟ(σ) = 0. Hence,
when γ > 0, ḟ = 0 so that by the chain rule

ḟ =
∂f

∂σ

∂σ

∂t
+

∂f

∂q

∂q

∂t
+

∂f

∂G

∂G

∂α

∂α

∂t
= 0. (3.6)

Inserting each partial derivative into the above formula, simplifying and using the relations
α̇ = γ, σ̇ = E(ε̇− ε̇p), ε̇p = γsign(σ), q̇ = γHsign(σ − q), (sign(σ))2 = 1, yields

ḟ = sign(σ − q)σ̇ − sign(σ − q)q̇ − ∂G

∂α
α̇

= sign(σ − q)[E(ε̇− ε̇p)− q̇]− ∂G

∂α
α̇

= sign(σ − q)Eε̇− sign(σ − q)Eε̇p − sign(σ − q)q̇ − ∂G

∂α
α̇

= sign(σ − q)Eε̇− sign(σ − q)Eγsign(σ − q)− sign(σ − q)γHsign(σ − q)− ∂G

∂α
γ

= sign(σ − q)Eε̇− γE − γH − ∂G

∂α
γ

= sign(σ − q)Eε̇− γ[E +H +
∂G

∂α
] ≤ 0.

(3.7)
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The above result holds because ḟ > 0 is not allowed. Then, if yielding (f = 0) is taking
place consistency requires ḟ = 0. Solving for γ using (3.7) with ḟ set equal to zero gives

γ =
sign(σ − q)Eε̇

E +H + ∂G
∂α

. (3.8)

With the above results in hand the elasto-plastic tangent modulus, Cep = dσ
dε
, is found as

follows. Observe that σ̇ = dσ
dε
ε̇. Then using (3.2), (3.3) and (3.8) yields

σ̇ = E(ε̇− ε̇p) = E(ε̇− γsign(σ − q)) = E(ε̇− (sign(σ − q))2Eε̇

E +H + ∂G
∂α

). (3.9)

Upon simplification the stress rate becomes

σ̇ =
E(H + ∂G

∂α
)

E +H + ∂G
∂α

ε̇ = Cepε̇. (3.10)

By inspection of (3.10) the elasto-plastic tangent modulus is

Cep =
E(H + ∂G

∂α
)

E +H + ∂G
∂α

. (3.11)

3.2 Development of algorithmic ingredients for 1D plasticity with
isotropic & kinematic hardening

Consider now the algorithmic ingredients for a 1D plasticity problem. Suppose that a strain
increment is provided so that a new total strain, ε, is given. From this information a trial
value of the yield condition, f trial

n+1 , is calculated. If f trial
n+1 ≤ 0 the strain is elastic and the

solution is trivial. If on the other hand f trial
n+1 > 0 then a plastic step has occurred. For

a plastic step, the problem is to find σn+1, αn+1, qn+1 such that f(σn+1, αn+1, qn+1) = 0
and ∆γ > 0. Having this information then allows calculation of εpn+1, which is the new
total plastic strain. To derive an algorithm for a typical plastic step first express σn+1 as a
function of σtrial

n+1 and ∆γ as follows:

σn+1 = E(εn+1 − εpn+1)

= E(εn+1 − εpn)− E(εpn+1 − εpn)

= E(εn+1 − εpn)− Eε̇pn+1

= σtrial
n+1 − E∆γsign(σn+1).

(3.12)

Assuming that the correct value of ∆γ > 0 can be found for the current plastic step and
using the relation sign(σn+1 − qn+1) = sign(ξn+1), here ξ is the relative stress, and all the
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quantities are calculated as

σn+1 = σtrial
n+1 −∆γEsign(ξn+1) (3.13a)

ξtrialn+1 = σtrial
n+1 − qn (3.13b)

qn+1 = qn +∆γHsign(ξn+1) (3.13c)

εpn+1 = εpn +∆γsign(ξn+1) (3.13d)

αn+1 = αn +∆γ (3.13e)

fn+1 ≡ |ξn+1| −G(αn+1) = 0 (3.13f)

ξn+1 = ξtrialn+1 −∆γsign(ξn+1)(E +H), (3.13g)

where the last expression comes about by using ξn+1 = σn+1 − qn+1.
The set of equations (3.13) are solved in terms of the trial elastic state as follows:

|ξn+1|sign(ξn+1) = |ξtrialn+1 |sign(ξtrialn+1 )−∆γ(E +H)sign(ξn+1) (3.14)

,which is rearranged to give

[|ξn+1|+∆γ(E +H)]sign(ξn+1) = |ξtrialn+1 |sign(ξtrialn+1 ). (3.15)

Now, since ∆γ, E and H are greater than zero, for the above equation to be valid the
following two conditions must be true

sign(ξn+1) = sign(ξtrialn+1 ) (3.16a)

|ξn+1|+∆γ(E +H) = |ξtrialn+1 |. (3.16b)

It remains to find the consistency parameter ∆γ > 0 from the discrete consistency condition
(3.13)f. Hence, using (3.16)b and (3.13)f yields

fn+1 = |ξtrialn+1 | −∆γ(E +H)−G(αn+1)

= |ξtrialn+1 | −∆γ(E +H)−G(αn+1)−G(αn) +G(αn)

= |ξtrialn+1 | −G(αn)−∆γ(E +H)−G(αn+1) +G(αn)

= f trial
n+1 −∆γ(E +H)−G(αn+1) +G(αn) = 0.

(3.17)

The last line of (3.17) is often a nonlinear equation in terms of ∆γ and must be solved by a
Newton-Raphson procedure. Once ∆γ is known using (3.16)a in (3.13)abc gives

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 ) (3.18a)

ξtrialn+1 = σtrial
n+1 − qn (3.18b)

ξn+1 = ξtrialn+1 −∆γsign(ξtrialn+1 )(E +H) (3.18c)

εpn+1 = εpn +∆γsign(ξtrialn+1 ) (3.18d)

αn+1 = αn +∆γ (3.18e)

qn+1 = qn +∆γHsign(ξtrialn+1 ). (3.18f)

Note also that (3.18)c may be rewritten as

ξn+1 =

[

1− ∆γ(E +H)

|ξtrialn+1 |

]

ξtrialn+1 . (3.19)
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3.3 The Algorithmic Tangent Modulus

Before summarizing the algorithm, the consistent or algorithmic tangent modulus is derived.
The algorithmic tangent modulus is

C
(k)
n+1 =

∂σ
(k)
n+1

∂ε
(k)
n+1

. (3.20)

In the following derivation the superscript k is omitted. Keep in mind in the ensuing deriva-
tion that εpn, αn and qn are constants since they are fixed values determined in the previous
step. Some preliminary results are obtained and then subsequently the derivation for the
algorithmic tangent modulus is provided. First, differentiate the trial stress σtrial

n+1 , using
σtrial
n+1 = E(εn+1 − εpn), to get

∂σtrial
n+1

∂εn+1

= E. (3.21)

Second, using ξtrialn+1 = σtrial
n+1 − qn find that

∂ξtrialn+1

∂εn+1

=
∂σtrial

n+1

∂εn+1

= E. (3.22)

Third, it is necessary to obtain ∂(∆γ)
∂εn+1

. This is accomplished by using the final result of (3.17),
to find

∆γ =
f trial
n+1 −G(αn+1) +G(αn)

E +H
. (3.23)

Differentiating (3.23) yields

∂(∆γ)

∂εn+1

=
1

E +H

∂f trial
n+1

∂εn+1

− 1

E +H

∂G(αn+1)

∂εn+1

+
1

E +H

∂G(αn)

∂εn+1

(3.24)

From (3.17) notice f trial
n+1 ≡ |ξtrialn+1 | −G(αn) to obtain

∂f trial
n+1

∂εn+1

=
∂|ξtrialn+1 |
∂ξtrialn+1

∂ξtrialn+1

∂εn+1

= sign(ξtrialn+1 )E (3.25)

Observe also that

∂G(αn+1)

∂εn+1

=
∂G

∂αn+1

∂αn+1

∂∆γ

∂∆γ

∂εn+1

=
∂G

∂αn+1

(1)
∂∆γ

∂εn+1

=
∂G

∂αn+1

∂∆γ

∂εn+1

(3.26)

and
∂G(αn)

∂εn+1

= 0. (3.27)

Now, use (3.25), (3.26) and (3.27) in (3.24) to get

∂(∆γ)

∂εn+1

+
1

E +H

∂G

∂αn+1

∂(∆γ)

∂εn+1

=
sign(ξtrialn+1 )E

E +H
. (3.28)
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After some algebra (3.28) yields

∂(∆γ)

∂εn+1

=
sign(ξtrialn+1 )E

E + ∂G
∂αn+1

+H
. (3.29)

Fourth, observe that

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 )

= (σtrial
n+1 − qn) + qn −∆γEsign(ξtrialn+1 )

= qn + ξtrialn+1 −∆γEsign(ξtrialn+1 )

= qn +

[

1− ∆γE

|ξtrialn+1 |

]

ξtrialn+1 .

(3.30)

Finally, differentiate (3.30) with respect to εn+1 and make use of (3.22) and (3.29) as needed
to get

∂σn+1

∂εn+1

=
∂qn
∂εn+1

+

[

1− ∆γE

|ξtrialn+1 |

]

E +
∂

∂εn+1

[

1− ∆γE

|ξtrialn+1 |

]

ξtrialn+1

=

[

1− ∆γE

|ξtrialn+1 |

]

E − ∂∆γ

∂εn+1

Eξtrialn+1

|ξtrialn+1 |
−∆γE

∂|ξtrialn+1 |−1

∂εn+1

ξtrialn+1

=

[

1− ∆γE

|ξtrialn+1 |

]

E − ∂∆γ

∂εn+1

Eξtrialn+1

|ξtrialn+1 |
+

∆γE2

|ξtrialn+1 |2
sign(ξtrialn+1 )ξ

trial
n+1

=

[

1− ∆γE

|ξtrialn+1 |

]

E +
∆γE2

|ξtrialn+1 |2
sign(ξtrialn+1 )ξ

trial
n+1 −

(

E2

E + ∂G
∂αn+1

+H

)

ξtrialn+1

|ξtrialn+1 |
sign(ξtrialn+1 )

=

[

1− ∆γE

|ξtrialn+1 |

]

E +
∆γE2

|ξtrialn+1 |
− E2

E + ∂G
∂αn+1

+H

= E − E2

E + ∂G
∂αn+1

+H
=

E2 + E( ∂G
∂αn+1

+H)− E2

E + ∂G
∂αn+1

+H
=

E(H + ∂G
∂αn+1

)

E +H + ∂G
∂αn+1

.

(3.31)

Therefore, in the 1D case, the algorithmic tangent modulus is equivalent to the elasto-
plastic tangent modulus (see (3.11)), that is

Cep = C
(k)
n+1 =

∂σ
(k)
n+1

∂ε
(k)
n+1

=
E(H + ∂G

∂αn+1
)

E +H + ∂G
∂αn+1

. (3.32)

In higher dimensions they are not equivalent.

3.4 Summary of results

With all of the above in hand it is possible to summarize the algorithm for 1D plasticity
with general isotropic hardening combined with linear kinematic hardening. The algorithm
is summarized in Box 3.1.
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1. Start with stored known variables {εn, εpn, αn, qn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial relative stress, the trial
value for the yield function, and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

ξtrialn+1 = σtrial
n+1 − qn

f trial
n+1 = |ξtrialn+1 | −G(αn)

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γ(E +H)−G(αn+1) +G(αn) = 0,

solve for ∆γ.

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 )

εpn+1 = εpn +∆γsign(ξtrialn+1 )

qn+1 = qn +∆γHsign(ξtrialn+1 )

αn+1 = αn +∆γ

Cep =
E(H+ ∂G

∂α
)

E+H+ ∂G

∂α

EXIT the algorithm

Box 3.1: 1D Plasticity Algorithm With General Isotropic Hardening Combined With Kine-
matic Hardening
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4 Examples of different types of isotropic hardening

combined with kinematic hardening

Using the results of section 3.4, different types of isotropic hardening functions, used to
create the yield stress function G(α), are combined with kinematic hardening. These cases
also demonstrate the actual implementation of the plasticity algorithm of Box 3.1. The
yield stress function and its derivative are substituted into the algorithm at the appropriate
locations. These algorithms advance the solution variables from their current values at step
n to their values at step n+1. The resulting algorithm is summarized in a box for each case
given. After observing the examples given it is hoped that the reader can then tackle other
cases.

4.1 Kinematic Hardening Only (no isotropic hardening)

For this case there is no isotropic hardening. The yield stress function is G(α) = σy and
therefore ∂G

∂α
= 0. The algorithm is summarized in Box 4.1. Note that the variable α is not

needed for this case. In this case, in step 4 of the algorithm, the consistency parameter, ∆γ,
is directly solved for algebraically.

4.2 Linear Isotropic Hardening Combined With Kinematic Hard-
ening

The yield stress function is G(α) = σy + Kα and therefore ∂G
∂α

= K. The algorithm is
summarized in Box 4.2. The consistency parameter, ∆γ, is solved for using the last line of
(3.17) as follows:

f trial
n+1 −∆γ(E +H)− (σy +Kαn+1) + (σy +Kαn)

= f trial
n+1 −∆γ(E +H)− σy −Kαn+1 + σy +Kαn

= f trial
n+1 −∆γ(E +H)−K(αn+1 − αn)

= f trial
n+1 −∆γ(E +H)−K(∆γ) = 0.

(4.1)

From the last line of equation (4.1)

∆γ =
f trial
n+1

E +H +K
, (4.2)

which is indicated in step 4 of the algorithm given in Box 4.2.

4.3 Exponential Isotropic Hardening Combined With Kinematic
Hardening

Voce [7] proposed an exponential form of isotropic hardening. This assumes that the hard-
ening eventually reaches a specified saturation (or maximum) stress. In this case the yield
stress function becomes G(α) = σy +(σu − σy)(1− e−δα) and therefore ∂G

∂α
= (σu − σy)δe

−δα.
The algorithm is summarized in Box 4.3
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1. Start with stored known variables {εn, εpn, qn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial relative stress, the trial
value for the yield function, and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

ξtrialn+1 = σtrial
n+1 − qn

f trial
n+1 = |ξtrialn+1 | − σy

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γ(E +H) = 0, solve for ∆γ.

⇒ ∆γ =
f trial
n+1

E +H

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 )

εpn+1 = εpn +∆γsign(ξtrialn+1 )

qn+1 = qn +∆γHsign(ξtrialn+1 )

Cep =
EH
E+H

EXIT the algorithm

Box 4.1: 1D Plasticity Algorithm With Kinematic Hardening Only
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1. Start with stored known variables {εn, εpn, αn, qn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial relative stress, the trial
value for the yield function, and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

ξtrialn+1 = σtrial
n+1 − qn

f trial
n+1 = |ξtrialn+1 | − (σy +Kαn)

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

∆γ =
f trial
n+1

E+H+K

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 )

εpn+1 = εpn +∆γsign(ξtrialn+1 )

qn+1 = qn +∆γHsign(ξtrialn+1 )

αn+1 = αn +∆γ

Cep =
E(H+K)
E+H+K

EXIT the algorithm

Box 4.2: 1D Plasticity Algorithm With Linear Isotropic Hardening Combined With Kine-
matic Hardening [6]
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1. Start with stored known variables {εn, εpn, αn, qn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial relative stress, the trial
value for the yield function, and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

ξtrialn+1 = σtrial
n+1 − qn

C = σu − σy

f trial
n+1 = |ξtrialn+1 | − (σy + C(1− e−δαn))

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γ(E +H)−G(αn+1) +G(αn) = 0, solve for

∆γ by using Newton-Raphson iterations (see Box 4.4).

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 )

εpn+1 = εpn +∆γsign(ξtrialn+1 )

qn+1 = qn +∆γHsign(ξtrialn+1 )

αn+1 = αn +∆γ

Cep =
E(H+Cδe−δαn+1 )

E+H+Cδe−δαn+1

EXIT the algorithm

Box 4.3: 1D Plasticity Algorithm With Exponential Isotropic Hardening Combined With
Kinematic Hardening
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1. Set ∆γ = 0

2. Calculate R, where R = f trial
n+1 −∆γ(E+H)−G(αn+∆γ)+G(αn),

and G(α) = σy + C(1− e−δα)

3. Initialize variables

set maxiter = 10

set k = 0, (the iteration counter)

set tol = 10−5

set dg = 0

4. WHILE |R| > tol and k < maxiter
dR
d∆γ

= −(E +H)− Cδe−δ(αn+∆γ))

dg = −
[

dR
d∆γ

]

−1

R

Update ∆γ = ∆γ + dg

Recalculate R = f trial
n+1 −∆γ(E+H)−G(αn+∆γ)+G(αn)

Update k = k + 1

END WHILE

5. END Newton-Raphson iterations

Box 4.4: Newton-Raphson iterations algorithm for exponential isotropic hardening combined
with kinematic hardening
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4.4 Ramberg-Osgood Isotropic Hardening Combined With Kine-
matic Hardening

A very common isotropic hardening model for metals is the Ramberg-Osgood [5] model, the
form of the equation used here is given by Kojic and Bathe [3]. The yield stress function is
G(α) = σy + Cαm and therefore ∂G

∂α
= mCαm−1. The algorithm is summarized in Box 4.5

5 Computer Implementation and Results

A truss program is implemented in MATLAB which includes the possibility of plastic defor-
mations. Only small strains are considered in the implemented program. Several examples
are provided. In all cases kinematic hardening is considered. Where included the type of
isotopic hardening is indicated.

5.1 Outline of Computer Algorithm – Displacement Control

The following implicit algorithm uses Newton-Raphson iterations within each specified dis-
placement increment to enforce global equilibrium for the truss structure (see Clarke and
Hancock [1] and McGuire et al [4] for displacement control details). The specified displace-
ment increments are prescribed at a structure dof chosen by the user. Typically this is the
structure dof of maximum displacement in the chosen dof direction. In the algorithm pre-
sented, equal size displacement increments are used. The reader is encouraged to note the
specific locations where the 1D plasticity routines are introduced into the algorithm. With-
out the introduction of the plasticity algorithms the computer program would be linear. The
algorithm proceeds as follows:

1. Define/initialize variables

• Dmax = the user specified maximum displacement at dof q

• ninc = the user specified number of displacement increments to reach Dmax

• ∆ūq = Dmax/ninc = the specified incremental displacement at dof q

• F = the total vector of externally applied global nodal forces

• Fn+1 = the current externally applied global nodal force vector

• λn+1 = the current load ratio, that is λn+1F = Fn + dF = Fn + dλn+1F = Fn+1,
the load ratio starts out equal to zero

• N = the vector of truss axial forces, axial force in truss element i is Ni

• u = the vector of global nodal displacements, initially u = 0

• x = the vector of nodal x coordinates in the undeformed configuration

• y = the vector of nodal y coordinates in the undeformed configuration

• L = the vector of truss element lengths based on the current u. L for truss element
i is Li =

√

((x2 + ux2)− (x1 + ux1))2 + ((y2 + uy2)− (y1 + uy1))2. The original

element lengths are saved in a vector Lo, where Loi =
√

(x2 − x1)2 + (y2 − y1)2.
The subscripts 1 and 2 refer to node 1 and 2 respectively for a given truss element.
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1. Start with stored known variables {εn, εpn, αn, qn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial relative stress, the trial
value for the yield function, and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

ξtrialn+1 = σtrial
n+1 − qn

f trial
n+1 = |ξtrialn+1 | − (σy + Cαm

n )

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γ(E +H)−G(αn+1) +G(αn) = 0, solve for

∆γ by using Newton-Raphson iterations (see Box 4.6).

σn+1 = σtrial
n+1 −∆γEsign(ξtrialn+1 )

εpn+1 = εpn +∆γsign(ξtrialn+1 )

qn+1 = qn +∆γHsign(ξtrialn+1 )

αn+1 = αn +∆γ

Cep =
E(H+mCαm−1

n+1
)

E+H+mCαm−1

n+1

EXIT the algorithm

Box 4.5: 1D Plasticity Algorithm With Ramberg-Osgood Isotropic Hardening Combined
With Kinematic Hardening



15

1. Set ∆γ = 0

2. Calculate R, where R = f trial
n+1 −∆γ(E+H)−G(αn+∆γ)+G(αn),

and G(α) = σy + Cαm

3. Initialize variables

set maxiter = 10

set k = 0 (the iteration counter)

set tol = 10−5

set dg = 0

4. WHILE |R| > tol and k < maxiter
dR
d∆γ

= −(E +H)−mC(αn +∆γ)m−1

dg = −
[

dR
d∆γ

]

−1

R

Update ∆γ = ∆γ + dg

Recalculate R = f trial
n+1 −∆γ(E+H)−G(αn+∆γ)+G(αn)

Update k = k + 1

END WHILE

5. END Newton-Raphson iterations

Box 4.6: Newton-Raphson iterations algorithm for Ramberg-Osgood isotropic hardening
combined with kinematic hardening
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• c and s = the vectors of cosines and sines for each truss element angle based on
the current u.

• K = KM, the assembled global tangent stiffness matrix, where KM is the mate-
rial stiffness which evolves as plastic deformations accumulate in individual truss
elements in the truss.

• Ks = the modified global tangent stiffness matrix to account for supports. Rows
and columns associated with zero displacement dofs are set to zero and the di-
agonal position is set to 1. Other (more efficient) schemes are possible, but this
proves simple to implement

• σ
n+1 = the vector of element axial stresses

• q
n+1 = the vector of element axial back stresses

• εn+1 = ε
elast
n+1 + ε

p
n+1= the vector of total axial strain values for each element i,

where ε = 1
Lo

L2
−L2

o

L+Lo
. Note that this form of calculating strain is better conditioned

for numerical calculations and is recommended by Crisfield [2].

• ε
p
n+1 = the vector of total axial plastic strain values for each element i

• C
n+1
ep = the vector of elasto-plastic moduli for each truss element i

• α
n+1 = the vector of equivalent plastic strain variables αn+1

i for each truss ele-
ment i

2. Start Loop over load increments (for n = 0 to ninc− 1).

(a) Calculate global stiffness matrix K based on current values of c, s,L and N.

(b) Modify K to account for supports and get Ks.

(c) Calculate the incremental load ratio dλn+1. The incremental load ratio is calcu-
lated as follows. Calculate a displacement vector based on the current stiffness,
that is û = K−1

s F. Take from û the displacement in the direction of dof q, that
is ûq. Then dλn+1 = ∆ūq/ûq. Update load ratio λn+1 = λn + dλn+1.

(d) Calculate the incremental force vector dF = dλn+1F.

(e) Solve for the incremental global nodal displacements du = K−1
s dF

(f) Update global nodal displacements, un+1 = un + du

(g) Update εi =
1
Lo

L2
−L2

o

L+Lo
for each element i and store in εn+1, note L here is based

on un+1.

(h) Use chosen plasticity algorithm here to update ε
p
n+1, σ

n+1, qn+1,αn+1 and C
n+1
ep

(i) Calculate the vector of new internal truss element axial forces Nn+1. For truss
element i the axial force is Nn+1

i = σn+1
i Ai.

(j) Construct the vector of internal global forces Fn+1
int based on Nn+1.

(k) Calculate the residual R = λn+1F−Fn+1
int and modify the residual to account for

the required supports.

(l) Calculate the norm of the residual R =
√
R •R
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(m) Iterate for equilibrium if necessary. Set up iteration variables.

• Iteration variable = k = 0

• tolerance = 10−6

• maxiter = 100

• δu = 0

• δλ = 0

• Save ε
p
n+1, q

n+1, and α
n+1 as εpon+1, q

n+1
o , and α

n+1
o

(n) Start Iterations while R > tolerance and k < maxiter

i. Calculate the new global stiffness K

ii. Modify the global stiffness to account for supports which gives Ks

iii. Calculate the load ratio correction δλk+1. The load ratio correction is calcu-
lated as follows. Calculate ŭ = K−1

s R and û = K−1
s F. From ŭ and û extract

the component of displacement in the direction of dof q, that is ŭq and ûq.
Then δλk+1 = δλk − ŭq/ûq.

iv. Calculate the correction to un+1, which is δuk+1 = δuk+K−1
s [R− (ŭq/ûq)F],

but note that un+1 is not updated until all iterations are completed

v. Update εi = 1
Lo

L2
−L2

o

L+Lo
for each element i and store in εn+1, note L here is

based on un+1 + δuk+1.

vi. Reset εpn+1, q
n+1, and α

n+1 to ε
p
on+1, q

n+1
o , and α

n+1
o (see Crisfield [2], pages

154 to 156, for discussion of why this is done).

vii. Use chosen plasticity algorithm here to update ε
p
n+1, σ

n+1, qn+1, αn+1 and
C
n+1
ep .

viii. Calculate the vector of new internal truss element axial forces Nk+1
n+1. For

truss element i the axial force is (Nk+1
n+1)i = σn+1

k+1Ai.

ix. Construct the vector of internal global forces Fn+1
int based on Nk+1

n+1.

x. Calculate the residual R = (λn+1 + δλk+1)F− Fn+1
int and modify the residual

to account for the required supports.

xi. R =
√
R •R

xii. Update iterations counter k = k + 1

(o) End of while loop iterations

3. Update variables to their final value for the current increment

• λn+1
final = λn+1

(0) + δλk

• un+1
final = un+1

(0) + δu(k)

4. End Loop over load increments

5.2 Single Truss Element - Monotonic Loading

A single truss element is pin supported at one end and is roller supported at the other end
(Figure 1). The resulting truss element is monotonically loaded in tension along its axis
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T

L

Figure 1: Single truss element loaded in tension.

in the direction of its only free displacement degree of freedom. The example element has
L = 60 in., A = 1.0 in.2 and E = 29 × 103 ksi. A plot of load versus displacement is
provided for three different plasticity models. In all cases the yield stress is taken as σy = 36
ksi. In all three models linear kinematic hardening is included with a modulus of H = 500
ksi. For the Ramberg Osgood [3] [5] model, C = 10.7 ksi and m = 0.2. For the Voce
(exponential) [7] model, σy = 36 ksi, σu = 58 ksi, C = σu − σy and δ = 160. The nonlinear
analysis is achieved by a displacement control procedure. A maximum displacement of 0.5
inches is specified and is achieved by a series of 100 equal displacement increments. The
results are presented in Figure 2. The post-yield force increase is evident for the case of
kinematic hardening alone. The cases that include isotropic hardening make it difficult
to see the contribution of the kinematic hardening since isotropic hardening is happening
simultaneously. Monotonic loading also contributes to making it difficult to fully observe
the behavior of kinematic hardening. The effect of kinematic hardening and the resulting
Bauschinger effect is more evident for an example that includes cyclic loading.

5.3 Single Truss Element - Cyclic Loading

A single truss element is pin supported at one end and is roller supported at the other end
(Figure 1). The resulting truss element is cyclically loaded in tension and compression along
its axis in the direction of its only free displacement degree of freedom. The example element
has L = 60 in., A = 1.0 in.2 and E = 29 × 103 ksi. A plot of load versus displacement is
provided for a Ramberg Osgood isotropic hardening plasticity model combined with kine-
matic hardening. The yield stress is taken as σy = 36 ksi. For the Ramberg Osgood model,
C = 30.7 ksi and m = 0.2. The kinematic modulus is K = 1000 ksi. The implicit nonlinear
analysis with Newton-Raphson iterations for equilibrium at the global level is achieved by
a displacement control procedure for the cycles of displacement shown in Figure 3. Notice
the highest value of yield force (Py ≈ 57 kips) reached at point 1 in Figure 3. Observe that
when the bar is loaded to point 2 in the opposite direction the magnitude of force required
to reach the yield force (Py ≈ 42 kips) is less than at point 1. This difference in yield force
for tension (+) versus compression (-) is a manifestation of kinematic hardening. The center
of the yield surface has shifted from the origin. This behavior would not be observed if only
isotropic hardening was employed. The yield force in each direction for points 1 and 2 would
have been the same.
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Figure 2: Single truss element monotonically loaded in tension with various 1D plasticity
models.
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Figure 3: Single truss element cyclically loaded - Ramberg Osgood Isotropic with Kinematic
Hardening. Points 1 and 2 have different yield force magnitudes, which is a manifestation of
kinematic hardening.
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Figure 4: Cantilever Tip Load Versus Free End Vertical Displacement For Cyclically Loaded
Truss With Isotropic Voce Material Combined With Kinematic Hardening

5.4 Cantilever Truss - Cylic Loading

A cantilever truss is supported in the x direction at the bottom left node. It is pin supported
at the top left node. The truss has 81 members and 42 nodes. The truss is 10 inches long
and 0.5 inches tall. Each member has a cross-sectional area of 0.1 in.2 and a modulus of
elasticity of E = 29×103 ksi. The truss is loaded(implicit nonlinear analysis) at its right end
cyclically by a displacement control scheme. All truss members are modeled with isotropic
exponential hardening by Voce [7] combined with kinematic hardening. The material model
values are σy = 36 ksi, σu = 58 ksi, C = σu − σy, δ = 160, and H = 5000 ksi. A plot of load
versus displacement is provided in Figure 4. The truss model is shown with its deflected
shape in Figure 5.

6 Conclusions

Plasticity models are often used in finite element analysis programs in order to account
for nonlinear material behavior. In truss programs 1D plasticity is necessary to model
element behavior when plastic material behavior is possible. The present paper extends the
material behavior described in [8] in order to include kinematic hardening. The current paper
provides numerous derivations, material algorithms, and examples of 1D isotropic hardening
plasticity combined with kinematic hardening. An algorithm is provided which describes
how such models are incorporated into a finite element truss program. Numerical results are
provided for a single bar element undergoing monotonic loading and also a case for cyclic
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loading. Numerical results are also provided for the case of a cyclically loaded cantilevered
truss. This introductory paper provides information as a stepping stone toward 3D plasticity
models.
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