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1 Introduction

Summary of the algorithm for 3D plasticity is presented. The algorithm includes the pos-
sibility of nonlinear isotropic and kinematic hardening in conjunction with J2 plasticity.
An algorithm of this type is most appropriate for ductile metals. Much of the information
presented is found in the book, Computational Inelasticity, by Simo and Hughes [7].

1.1 Isotropic Linear Elasticity

For the isotropic linear elastic portion of the material behavior, the relation between stress
and strain is

σ = C : ε, (1)

σij = Cijklεkl, (2)

where the 4th order isotropic elasticity tensor is written as

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (3)

Substituting (3) into (2) and simplifying yields

σij = λδijεkk + µ(εij + εji). (4)

The relationship between stress and strain is expressed in terms of Lamé parameters in
equation (4). An alternative representation is to express stress in terms of volumetric and
deviatoric components. That is

σ = σvol + σdev = κ1⊗ 1 : ε+ 2µIdev : ε, (5)

where κ is the bulk modulus.
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1.2 Isotropic and Kinematic Hardening Equations

A fairly general expression, which includes a nonlinear term [10], for isotropic hardening
takes the following form:

K(α) = σy + θH̄α + (σu − σy)(1− e−δα), (6)

where θ ∈ [0, 1] and is used to facility mixed hardening. The hardening modulus is H̄. De-
pending on the choice of θ kinematic hardening may also be included. Although a nonlinear
form could be used, a linear form of kinematic hardening is

H(α) = (1− θ)H̄α. (7)

In each of the above cases the following terms are found:

dK(α)

dα
= K ′ = θH̄ + (σu − σy)δe

−δα (8)

and
dH(α)

dα
= H ′ = (1− θ)H̄. (9)

These terms are included in the plasticity algorithm of the following section.

1.3 Algorithm for 3D J2 plasticity with nonlinear forms of hard-

ening [7]

A 3D J2 plasticity algorithm with nonlinear isotropic and kinematic hardening is contained
in Box 1.1. It is important to note that the algorithms are expressed in terms of tensor
notation.

Box 1.1: 3D Plasticity AlgorithmWith General Isotropic Hardening (Tensor Notation)

1. Start with stored known variables {εn, ep
n, αn, βn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the trial elastic stress.

dev[ε]n+1 = en+1 = εn+1 −
1

3
(tr[εn+1])1

strialn+1 = 2µ(en+1 − ep
n)

ξtrialn+1 = strialn+1 − βn

4. Check yield condition

f trial
n+1 =

∥

∥ξtrialn+1

∥

∥−
√

2

3
K(αn)
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If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = κtr[εn+1]1+ strialn+1

set Cn+1 = C = κ1⊗ 1+ 2µIdev

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 5

5. Elasto-plastic step

nn+1 =
ξtrialn+1

‖ξtrialn+1 ‖
Find ∆γ from consistency condition, Box 1.2.

Update αn+1 = αn +
√

2
3
∆γ

6. Update back stress, plastic strain, and stress

βn+1 = βn +
√

2
3
[H(αn+1)−H(αn)]nn+1

e
p
n+1 = ep

n +∆γnn+1

σn+1 = κtr[εn+1]1+ strialn+1 − 2µ∆γnn+1

7. Compute the consistent elasto-plastic tangent moduli

θn+1 = 1− 2µ∆γ

‖ξtrialn+1 ‖
θ̄n+1 =

1

1+
[K′+H′]n+1

3µ

− (1− θn+1)

set Cn+1 = κ1⊗ 1+ 2µθn+1[I− 1
3
1⊗ 1]− 2µθ̄n+1nn+1 ⊗ nn+1

1.4 Newton-Raphson iterations for consistency [7]

The consistency condition is satisfied when the correct value of the algorithmic consistency
parameter, ∆γ, is found. The consistency condition for 3D J2 plasticity with nonlinear
hardening is

g(∆γ) = −
√

2

3
K(αn+1) +

∥

∥ξtrialn+1

∥

∥− (2µ∆γ +

√

2

3
[H(αn+1)−H(αn)]) = 0. (10)

Box 1.2: Newton-Raphson iterations for consistency (tensor notation)

1. Initialize variables

∆γ(0) = 0

α
(0)
n+1 = αn

k = 0
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maxiter = 20

tol = 10−4

set g = 1 (arbitrary value, to force consistency check and iterations)

2. Iterate, while |g(∆γ(k))| > tol and k ≤ maxiter

k = k + 1

(i) Compute ∆γ(k)

g(∆γ(k)) = −
√

2
3
K(α

(k)
n+1) +

∥

∥ξtrialn+1

∥

∥− (2µ∆γ(k) +
√

2
3
[H(α

(k)
n+1)−H(αn)])

Dg ≡ dg(∆γ(k))
d∆γ

= −2µ

{

1 +
H′(α

(k)
n+1)+K′(α

(k)
n+1)

3µ

}

∆γ(k+1) = ∆γ(k) − g(∆γ(k))
Dg

(ii) Update equivalent plastic strain

α
(k+1)
n+1 = αn +

√

2
3
∆γ(k+1)

End

1.5 Remarks

1. Elasticity constants are summarized here:

(a) Bulk modulus, κ

κ = λ+
2

3
µ (11)

(b) Shear modulus, µ = G

µ = G =
E

2(1 + ν)
(12)

(c) Lamé parameter, λ

λ =
Eν

(1 + ν)(1− 2ν)
(13)

(d) Modulus of elasticity, E

(e) Poisson’s ratio, ν

2. Identity tensors used in Box 1.1 are summarized here:

(a) Second order symmetric unit tensor, 1

1 = δijei ⊗ ej (14)
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(b) Fourth order symmetric unit tensor, I. For arbitrary 2nd order tensor S, I : S =
Ssym. That is, the operation results in the symmetric part of the tensor.

I =
1

2
(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el (15)

(c) Fourth order identity tensor, 1⊗1. For arbitrary 2nd order tensor S, 1⊗1 : S =
tr(S)1.

1⊗ 1 = δijδklei ⊗ ej ⊗ ek ⊗ el (16)

(d) Fourth order deviatoric identity tensor. For arbitrary 2nd order tensor S, Idev :
S = Sdev. That is, the operation results in the deviatoric part of the tensor.

Idev = I− 1

3
1⊗ 1 (17)

3. Boxes 1.1 and 1.2 are written making use of tensor notation.

4. In Box 1.1 the term, [K ′ + H ′]n+1,in the algorithmic tangent modulus, is indicating
that K ′ and H ′ be evaluated at αn+1.

5. The tensor Cn+1 is the consistent(or algorithmic) elato-plastic tangent modulus. It
is the modulus to be used when constructing the contribution to the element stiffness
matrix at a particular gauss point of integration. By using this modulus, in a nonlinear
analysis, the quadratic convergence of Newton-Raphson iterations at the global level
is maintained, for appropriate step sizes.

2 Algorithms using Voigt notation

It is common to implement finite element computer programs by using Voigt notation [1].
Hence, it is convenient to express the previous algorithms in the Voigt form. With an eye
toward that eventual goal, some variables in Voigt notation are presented below.

2.1 2nd order tensors to Voigt form

For stress, a 2nd order tensor to Voigt form is as follows:

σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 ⇒































σ11

σ22

σ33

σ23

σ13

σ12































. (18)
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For tensorial strains, the Voigt form is as follows:

ε =































ε11
ε22
ε33
ε23
ε13
ε12































. (19)

The Voigt form, in terms of engineering shear strains, is as follows:

ǫ =































ε11
ε22
ε33
2ε23
2ε13
2ε12































=































ε11
ε22
ε33
γ23
γ13
γ12































. (20)

2.2 4th order tensors to Voigt form

1⊗ 1 ⇒ 11T =































1
1
1
0
0
0































{

1 1 1 0 0 0
}

=

















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(21)

Idev ⇒

























2
3

−1
3

−1
3

0 0 0

−1
3

2
3

−1
3

0 0 0

−1
3

−1
3

2
3

0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2

























(22)

I ⇒

























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2

























(23)
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I2 ⇒

























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

























(24)

2.3 A needed transformation matrix [3]

P =

























2
3

−1
3

−1
3

0 0 0

−1
3

2
3

−1
3

0 0 0

−1
3

−1
3

2
3

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

























(25)

3 Matrix Voigt representation of algorithms for imple-

mentation with FEA

A usual FEA implementation is done using matrix Voigt notation and engineering shear
strains rather than tensor shear strains. Furthermore, it is convenient to construct the
algorithms to accept engineering shear strains as input and output a consistent algorithmic
tangent modulus for use within an element stiffness formulated with engineering strains.
Algorithms which meet these requirements are provided in Boxes 3.1 and 3.2 below.

3.1 FEA Matrix Voigt Algorithm for 3D J2 plasticity with non-
linear forms of hardening [7][3]

A 3D J2 plasticity algorithm with nonlinear isotropic and kinematic hardening is contained
in Box 3.1. In this context stresses and strains are 6 by 1 column vectors and 4th order
identity tensors and moduli matrices are 6 by 6 matrices. Examples of these entities are
given in equations (18) through (25).

Box 3.1: 3D Plasticity Algorithm With General Isotropic Hardening (Matrix Voigt
Notation)

1. Start with stored known variables {ǫn, ǫpn, αn, βn}. Convert engineering strains
to tensorial strains.

εn = Iǫn, ep
n = Iǫpn, ∆εn = I∆ǫn
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2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the trial elastic stress.

dev[ε]n+1 = en+1 = εn+1 −
1

3
(tr[εn+1])1

strialn+1 = 2µ(en+1 − ep
n)

ξtrialn+1 = strialn+1 − βn

4. Check yield condition

f trial
n+1 =

√

(ξtrialn+1 )
TPξtrialn+1 −

√

2

3
K(αn)

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = κtr[εn+1]1+ strialn+1

set Cn+1 = C = κ11T + 2µIdev

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 5

5. Elasto-plastic step

nn+1 =
ξtrialn+1√

(ξtrialn+1 )TPξtrialn+1

Find ∆γ from consistency condition, Box 3.2.

Update αn+1 = αn +
√

2
3
∆γ

6. Update back stress, plastic strain, and stress

βn+1 = βn +
√

2
3
[H(αn+1)−H(αn)]nn+1

e
p
n+1 = ep

n +∆γnn+1

σn+1 = κtr[εn+1]1+ strialn+1 − 2µ∆γnn+1

7. Compute the consistent elasto-plastic tangent moduli

θn+1 = 1− 2µ∆γ√
(ξtrialn+1 )TPξtrialn+1

θ̄n+1 =
1

1+
[K′+H′]n+1

3µ

− (1− θn+1)

Cn+1 = κ11T + 2µθn+1Idev − 2µθ̄n+1nn+1n
T
n+1

EXIT algorithm
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8. Convert terms so output is in form consistent with engineering shear strains

set ǫn+1 = I2εn+1, ǫ
p
n+1 = I2e

p
n+1

3.2 FEA Newton-Raphson iterations for consistency [7][3]

The consistency condition is satisfied when the correct value of the algorithmic consistency
parameter, ∆γ, is found. The consistency condition for 3D J2 plasticity with nonlinear
hardening is

g(∆γ) = −
√

2

3
K(αn+1) +

√

(ξtrialn+1 )
TPξtrialn+1 − (2µ∆γ +

√

2

3
[H(αn+1)−H(αn)]) = 0. (26)

Box 3.2: Newton-Raphson iterations for consistency (Matrix Voigt notation)

1. Initialize variables

∆γ(0) = 0

α
(0)
n+1 = αn

k = 0

maxiter = 20

tol = 10−4

set g = 1 (arbitrary value, to force consistency check and iterations)

2. Iterate, while |g(∆γ(k))| > tol and k ≤ maxiter

k = k + 1

(i) Compute ∆γ(k)

g(∆γ(k)) = −
√

2

3
K(α

(k)
n+1) +

√

(ξtrialn+1 )
TPξtrialn+1 − (2µ∆γ(k)

+

√

2

3
[H(α

(k)
n+1)−H(αn)])

Dg ≡ dg(∆γ(k))
d∆γ

= −2µ

{

1 +
H′(α

(k)
n+1)+K′(α

(k)
n+1)

3µ

}

∆γ(k+1) = ∆γ(k) − g(∆γ(k))
Dg

(ii) Update equivalent plastic strain

α
(k+1)
n+1 = αn +

√

2
3
∆γ(k+1)

End
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3D J2 Plasticity Stress versus Strain

Figure 1: von Mises stress versus axial strain for material point in tension

4 Numerical Examples

4.1 Tension at a material point with 3D J2 plasticity

A material point has the following properties. Modulus E = 29000 ksi, elastic ν = 0.3,
in plastic range νp = 0.5. For hardening, due to Voce [10], δ = 100, σy = 36 ksi, and
σu = 58 ksi. For this example the hardening modulus H̄ = 0. Notice the values of ν change
in the plastic range. This occurs naturally in the algorithm, but the incremental strains
must be specified properly for a material point to get expected behavior like a 1D bar in
tension. In the elastic region (von Mises stress ≤ σy), the nonzero incremental strains are
ǫ11 = 0.002, ǫ22 = −0.002ν, ǫ33 = −0.002ν. However, when the von Mises stress exceeds σy,
the incremental strains are ǫ11 = 0.002, ǫ22 = −0.002νp, ǫ33 = −0.002νp. In this example, 50
increments of strain are applied to the material point. This is done within a short Matlab
script which checks when the von Mises stress exceeds yield and adjusts ν for the increments
accordingly. The results are illustrated in Figure 1. Since this case only includes axial strains
the results are identical regardless of using tensorial strains or engineering strains, since the
engineering shear strains do not participate in the results. As expected the material yields
at σy = 36 ksi and hardening continues until reaching an ultimate stress of σu = 58 ksi.
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Figure 2: Perfectly plastic shear stress versus engineering shear strain

4.2 Shear at a material point with 3D J2 plasticity

A material point has the following properties. Modulus E = 29000 ksi, elastic ν = 0.3.
For the case of perfect plasticity there is no hardening, hence, setting σy = σu = 36 ksi
eliminates Voce hardening. Furthermore, the linear hardening modulus is also set to zero,
H̄ = 0. For this case, the nonzero incremental strain is γ12 = 0.002. In this example, 20
increments of strain are applied to the material point. This is done within a short Matlab
script. The results are illustrated in Figure 2. It is an interesting verification case for which
it is observed that τ = Gγ for the linear elastic portion of the plot. It is also noteworthy
that shear yielding, τy occurs at a value of 1√

3
σy, which is in line with the prediction of von

Mises (J2) plasticity theory. These observations provide verification that the algorithm is
performing correctly within an engineering strain formulation.

5 Conclusion

Computational J2 plasticity with mixed nonlinear hardening is presented. Algorithms to im-
plement J2 plasticity into the finite element method or virtual element method, for example,
are given. Numerical results and relevant references are provided.
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