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1 Introduction

It is easy to understand yield as a material failure in a 1D tension test. However, in a 3D
state of stress it is less clear when yielding will occur. That is, at a material point in a 3D
body it is possible that none of the individual stresses at the point are above yield, however,
the combined effect of the stresses at the point may be sufficient to cause yielding at the
material point. As a result, theories of failure have been hypothesized to obtain criteria for
failure (or yielding) for 3D states of stress. J2 plasticity is the result of one such theory. For
ductile metal materials J2 plasticity does a good job of predicting if a 3D stress state is caus-
ing yielding [2, 8]. Clearly, this has important practical applications to engineering design.
A derivation for J2 plasticity is presented in this article. The von Mises yield criterion is
another name for J2 plasticity. This theory arises due to the hypothesis that yielding begins
when distortional strain energy density reaches a critical (maximum) value [1, 2]. In the
ensuing sections the necessary ingredients for a 3D yield criteria (J2 plasticity) are derived.
Finally, the ingredients are put together to provide a formula that predicts if yielding is
taking place in a 3D state of stress.

2 Strain Energy Density

Consider a stress block in uniaxial tension as shown in Figure 1. The stress block has
differential dimensions, dx, dy, dz, and differential volume dv = dxdydz. The block is stressed
from 0 to σx. Hence, the average stress during loading is 1

2
σx. The final strain due to loading

in the x direction is εx. Energy equals work and work equals force times displacement.
Therefore, the work performed on the block of material is

work = (avg. force)(distance) =
1

2
σxdzdy(εxdx) =

1

2
σxεxdxdydz =

1

2
σxεxdv. (1)

Strain energy density, we, is defined as work per volume.

we =
work

volume
=

1
2
σxεxdv

dv
=

1

2
σxεx (2)
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The result in (2) is for a 1D state of stress. In general, strain energy density for a 3D state
of stress, written in tensor (or indicial) notation [3, 6], is

we =
1

2
σijεij, (3)

where here, and throughout the remainder of this article, indices range over values from 1
to 3 and the Einstein summation convention is invoked [3, 6].
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Figure 1: Stress block in uniaxial tension.

3 Stress Strain Relations for Isotropic Elastic Material

For isotropic elastic materials stress is related to strain [7] as follows:

σij = λδijεkk + 2µεij, (4)

where λ and µ are Lamé constants, and δij is the kronecker delta.

4 Deviatoric Stress and Volumetric Stress

The stress tensor, σ, can be decomposed into two parts [7]. Volumetric stresses, σvol, pro-
duce strains that change the total volume of a given stress block. Deviatoric (or distortional)
stresses, σdev, do not produce volume change but instead are responsible for strains that
cause the stress block to distort or deviate from a cubic or rectangular prism shape.

The volumetric part is found by the following observations. For a principal stress block
only volumetric strains are produced. The average stress for this condition is 1

3
(σ1+σ2+σ3),

where σ1, σ2, σ3 are the principal stresses. This says that the average stress is one third of
the trace of the stress tensor. It follows, since the trace is invariant, that in general the
average stress is 1

3
(σkk). As a result the (volumetric) stresses that cause volume change are

σvol
ij =

1

3
σkkδij . (5)
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The deviatoric part is found as follows. First, note that the stress tensor is representable
as

σ = σ
vol + σ

dev. (6)

Hence, from (6), the deviatoric stress tensor is

σ
dev = σ − σ

vol. (7)

In indicial notation, using (5) in (7),

σdev
ij = σij −

1

3
σkkδij. (8)

5 Strain Energy Density in Terms of Stresses

The strain energy density expression, (3), is in terms of stresses and strains. For practical
applications it is useful to have the strain energy density in terms of stresses only. Hence,
use (4) to get

σij − λδijεkk = 2µεij. (9)

Then, from (9), the strains are

εij =
1

2µ
(σij − λδijεkk). (10)

Next, use (4) to obtain

σkk = λδkkεmm + 2µεkk

= 3λεmm + 2µεkk

= 3λεkk + 2µεkk

= (2µ+ 3λ)εkk.

(11)

Rearranging (11) yields

εkk =
σkk

2µ+ 3λ
. (12)

Using (12) in (10) gives strains in terms of stresses,

εij =
1

2µ

(

σij −
λδijσkk

2µ+ 3λ

)

=
σij

2µ
−

λδijσkk

2µ(2µ+ 3λ)
. (13)

Last, insert (13) into (3) to get strain energy density in terms of stresses,

we =
1

2
σij

(

σij

2µ
−

λδijσkk

2µ(2µ+ 3λ)

)

. (14)
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6 Strain Energy Density in Terms of Deviatoric Stresses

The strain energy density is written in terms of the deviatoric stresses by substituting σdev
ij

for σij in (14). The resulting formula gives the strain energy density caused by deviatoric
(or distortional) strain alone,

wdev
e =

1

2
σdev
ij

(

σdev
ij

2µ
−

λδijσ
dev
kk

2µ(2µ+ 3λ)

)

. (15)

Notice the second term in the parenthesis of (15). It contains the trace of the deviatoric
stress, σdev

kk , which is zero. This can be seen by taking the trace of (8). Hence, (15) is
simplified to

wdev
e =

1

2
σdev
ij

σdev
ij

2µ
=

1

2µ

(

1

2
σdev
ij σdev

ij

)

=
1

2µ
J2. (16)

Notice that J2 = 1
2
σdev
ij σdev

ij . J2 is the second invariant of the deviatoric stress tensor, σdev
ij ,

in equation (8). In a later section it is shown that the von Mises yield criterion is a function
of J2. It is for this reason that the von Mises yield criterion is sometimes referred to as J2
plasticity.

By substituting (8) into (16) an expression is obtained in terms of stress tensor compo-
nents, σij, that is

wdev
e =

1

2

(

σij −
1

3
σkkδij

)(

σij −
1
3
σkkδij

2µ

)

. (17)

After some algebra (17) is simplified to

wdev
e =

1

4µ

(

σijσij −
1

3
(σkk)

2

)

. (18)

It is important to note that (18) allows calculation of strain energy density due to deviatoric
(or distortional) strains alone. The von Mises theory of yielding hypothesizes that yielding
begins when some maximum distortional strain energy density is reached. The maximum
distortional strain energy density that can be reached at the onset of yielding is found in the
following section.

7 Maximum Distortional Strain Energy Due to Uniax-

ial State of Stress

If a material point in a body is placed in uniaxial tension, like that shown in Figure 1, the only
nonzero stress component is σ11 = σx. For this condition the maximum value is σx = σyield.
This is the maximum stress that can be reached before the onset of yielding and at that
stress state the associated distortional strains are at their maximum [1, 2]. Hence, this is
a simple thought experiment that illustrates a stress state that will cause the maximum
distortional strain energy density possible. The maximum distortional strain energy density
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possible can immediately be calculated by substituting σ11 = σyield into (18) and noting that
all other stresses are zero during the uniaxial state of stress. The result is

wdev
e =

1

4µ

(

(σyield)
2
−

1

3
(σyield)

2

)

=
1

4µ

(

2

3
(σyield)

2

)

. (19)

8 von Mises Yield Criterion

The von Mises yield criterion hypothesizes that yielding will occur for a general 3D state
of stress when the combination of stresses reaches the maximum distortional strain energy
density [1, 2]. Therefore, setting (18) equal to (19) yields

1

4µ

(

σijσij −
1

3
(σkk)

2

)

=
1

4µ

(

2

3
(σyield)

2

)

. (20)

Solving (20) for σyield gives

σyield =

√

3

2

(

σijσij −
1

3
(σkk)2

)

. (21)

Equivalently, in terms of, σdev
ij ,

σyield =

√

3

2

(

σdev
ij σdev

ij

)

=
√

3J2. (22)

It is important to note that if the right hand side of equation (21) or (22) is less than yield
than yielding has not taken place yet. It is for this reason that a von Mises stress, using (21)
or (22), is often defined as

σv =

√

3

2

(

σijσij −
1

3
(σkk)2

)

=
√

3J2. (23)

Then, if σv < σyield the material point in the body has not yielded. However, if σv ≥ σyield

then the material point has yielded. This establishes a yield criterion to determine if yielding
has occurred due to a general 3D state of stress.

Last, the von Mises stress formulas are provided in some useful forms suitable for calcu-
lations. In order to illustrate how these formulas are obtained, observe that

σijσij = σ11σ11 + σ12σ12 + σ13σ13 + σ21σ21 + σ22σ22 + σ23σ23 + σ31σ31 + σ32σ32 + σ33σ33

= σ11σ11 + σ22σ22 + σ33σ33 + 2σ12σ12 + 2σ13σ13 + 2σ23σ23

(24)

and

1

3
(σkk)

2 =
1

3
(σ11+σ22+σ33)

2 =
1

3
((σ11)

2+(σ22)
2+(σ33)

2+2σ11σ22+2σ11σ33+2σ22σ33) (25)
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If (24) and (25) are inserted into (21), after some algebra one obtains

σv =

√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2
12 + σ2

13 + σ2
23)

2
. (26)

Equation (26) is a suitable form for computer calculations to test for yielding at various points
in a body. Modern finite element analysis software often provides options for calculating and
visualizing von Mises stresses as a function of position throughout a body being analyzed.
Another useful form, in terms of principal stresses, is

σv =

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
. (27)

9 Conclusion

The von Mises yield criterion based on maximum distortional strain energy density is derived.
It provides a test by which a 3D state of stress can be tested to determine if yielding at a
material point has occurred. This has important design ramifications because engineering
designs often need to meet required safety margins to avoid failure by yielding. The von
Mises theory of failure is particularly useful for ductile metal materials and experiments
have shown that it is a good predictor of failure for such materials [2, 8]. Suitable references
for further study are provided [4, 5].
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