GENERATING MOTION

- Moving a part adds no value (except in packaging)
- Moving a tool adds no value unless work is done on part.
- So, we want to avoid moving parts or tools any more than necessary

 One metal machining batch factor: 95% of a parts time is spent moving or waiting, 5% of time is on tool, of which only 30% is spent cutting.

LINEAR MOTION

- Linear translation is most common motion
- Linear movement can be caused by:
 - Pneumatic or hydraulic cylinders
 - Rotary motion converted to linear
 - Vibratory systems
 - Electric solenoids
 - Linear electric motors
 - Piezoelectric actuators

PNEUMATIC SYSTEMS

- Pneumatic power very popular in industry
 - High force, economical actuators
 - Force is independent of stroke
 - Non-flammable, compressible, storable medium
 - Compact, low heat production actuators
- Pneumatics best suited to discrete motion (not proportional)
- Energy costs of pneumatics are very high
 - ~\$0.005 / cu.ft. / year
 - 1" cylinder with 6" stroke once/sec => \$392/year

PNEUMATIC SYSTEMS

PNEUMATIC SYSTEM LAYOUT

AIR PREPARATION

SINGLE-ACTING CYLINDER

SINGLE-ACTING CYLINDER

DOUBLE-ACTING CYLINDER

PNEUMATIC CYLINDER MOUNTING

- Off-axis loading must be prevented!
- Pivoting mounts can eliminate axial loading:
 - Clevis mount
 - Trunnion mount
 - Universal joints
- Shaft may rotate unless antirotation model is used

TRUNNION MOUNT

PNEUMATIC TWIN CYLINDER

PNEUMATIC BELLOWS

PNEUMATIC BELLOWS

PNEUMATIC ROTARY ACTUATORS

PNEUMATIC ROTARY ACTUATORS

PNEUMATIC SCHEMATICS

PNEUMATIC SCHEMATICS

