

Design for the other 90%

- 90% of today's designers work for the richest 10% of world's customers
- We need things like:
 - \$2 eyeglasses
 - \$3 drip irrigation systems
 - \$5 household water filter
 - \$10 solar lantern
 - \$100 house with real market value

Design for other 90%

- Treadle pump example:
 - supply chain in Bangladesh
 - 75 private sector manufacturers
 - 3,000 village dealers
 - 3-4000 village technicians

– impacts:

- 2.1 million poor families in Asia and Africa
- collective investment \$50M
- collective income increased by \$210M/year forever!
- cost to put same 1M acres under dam/canal irrigation: \$2B+

Design for other 90%

- Hybrid Solar Food Dryer example:
 - conventional sun drying
 - inconsistent moisture level => low price
 - dependent on weather
 - limited capacity
 - lack of hygiene
 - solution:
 - hybrid solar/wood heat dryer
 - PV powered circulation, moisture monitoring

Design for other 90%

- Hybrid Food Dryer cont.
 - 1000kg in, 250kg out
 - 10 year life
 - \$62.50/day value
 - \$12K cost => 192 day payback w/o credit, 288
 days w/ credit, \$150K lifetime value added
 - business plan includes local manufacturers, farmer coops, financing institution, entrepreneur, loan guarantor

Baylor University

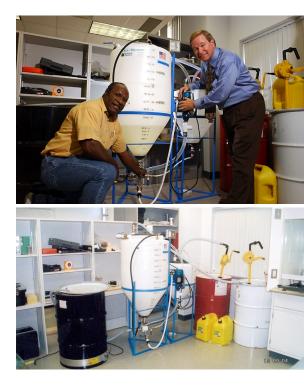
- Converting Coconuts into Value-Added Products in Developing Countries
- "Coco-nuts" Team:
 - Graduate student team leader
 - One each of sophomore, junior, senior engineering students
 - faculty sponsor

- Funding from:
 - NCIIA E-team grant
 - Kauffman Foundation
 - UN

- Customers:
 - Rural villages in developing countries
 - Abundance of coconuts, no electric grid
 - Customers need:
 - electricity
 - fuel for cooking
 - housing
 - income (jobs)

- Analyzed coconuts
 - young coconuts (9mo)
 - 65 calories
 - superior to Gatorade
 - mature coconuts (12mo)
 - husk 35%
 - fiber, pith
 - shell 12%
 - copra 28%
 - oil 9%
 - meal 5%
 - water 14%
 - milk 5%

Fig. 1 Cross section of a coconut


- coconut milk
 - 5% of total mass
 - 127 calories
 - 12 g fat
- copra
 - 28% of total mass
 - 14% water, 9% oil, 5% meal
 - mechanical expeller for oil

Coconut oil converted to diesel fuel

- modify coconut oil to run in std engines
 - needs 16% methanol, small amt of lye
 - \$0.69/gal + coconut oil
 - low emissions
 - first project in Papua New Guinea
- or modify engines to run on pure coconut oil
 - preheat coconut oil to >80C to lower viscosity
 - best properties of 50 vegetable oils for diesel fuel

- Husk
 - 35% of total mass
 - 11% fiber, 24% pith
 - heat and pressure cures pith into hard resin binder
 - make fiber reinforced panels directly by hot pressing husks

- shell
 - 12% of total mass
 - specific gravity of 1.2 (doesn't float)
 - 2x hardness of furniture hardwood
 - strength similar to low strength aluminum
 - useable as fibers in engineering polymers
 - useable as cooking fuel or for charcoal

- White meal
 - 5% of total mass
 - 80g/coconut
 - 16% protein
 - good pig and chicken feed
 - sells for \$0.25/kg

- Coconut economics summary:
 - 100 coconuts wholesale prices
 - 3 gal of diesel fuel \$ 9
 - 2 sheets of particle board \$20
 - 19kg of coconut shell \$20
 - 8kg of meal for animal feed \$ 2
 - cost of production -\$6
 - cost of processing -\$8
 - profit is \$0.37/coconut
 - village could produce 500 coconuts/day
 - (1250 trees) for \$55K / year profit
 - capital costs of \$90K

- Rural electrification
 - \$11K would buy 30kW generator run on biodiesel
 - 500 homes would get evening lighting
 - \$0.45/kwh (cheaper than kerosene or propane)
- Deployment Projects under way
 - PNG
 - Hyderabad, India
 - Acapulco
 - Kenya


Manufacturing for the other 90%

VVOnonke.org

vvononke.org

http://www.youtube.com/watch?v=qjgcHOWcWGE

http://www.sunoven.com/assembly.asp

how to sidge the divide?

- Manufacturing is the basis of most economic activity
- Economic activity is essential to all 100% of the world's population – spread it out!
- An exponentially increasing world population needs exponentially increasing productivity
- Automation is the only way to achieve the efficiencies needed to provide energy, food, goods, and services for the world population
- Use people when appropriate and robots when appropriate
- Watch for unintended consequencies
 - displaced local farmers or workers
 - environmental degradation
 - resource depletion
 - defacto subsidies for uneconomical processes