Physical Electronics

Schrodinger Equation

Time-dependent (one-dimensional)

The Schrodinger equation is
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where

V =V (x) (potential energy)

Solve the differential equation by separation of variables. Assume that

W(x,1) =y (X))

-h? d? d
o)L 0

2 PO+ V) (x)e) = ihl/J(X)E
Divide by v (x)¢(2) .

i id_u;\ +V(x)= lhl% = G (constant)

2m \y dx*) ¢ dt

Solving for ¢ gives
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which should be e for a matter wave by analogy with an E.M wave with
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SW(x,t) = w(x)e_gEt is the solution to the time-dependent Schrodinger equation.
Time-independent
The Schrodinger equation is
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This can easily be extended to three dimensions as
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Born interpretation of wave functions

The intensity (energy/m?/sec) of an E.M wave is proportional to the square of the EorB
field. It may be better to consider energy density in an electric field (% e E ? ) The energy
should be proportional to the probability of finding a photon there. By analogy with
this, Born suggested that the probability density of observing a particle is given by
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This leads to a so-called normalization for the wave function since the probability density

integrated over all space should be 1 for a given particle. In one dimension this becomes
f :I/J *dx = 1
From probability theory, the expectation value of a given quantity is

3 xP(x)dx
(x) = 'ﬁ; where P(x) is the probability density.
f_ _P(x)dx

For particles this becomes (with normalized wave functions)
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Recall that for E.M. waves of the form " ™"

then
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Therefore we associate the operator —zhg with momentum p,. With normalized wave

functions
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(notice the importance of operator position)

Now consider the following requirements on wave functions:



Y (x) dx
1. finite 1. finite
2. single-valued 2. single-valued
3. continuous 3. continuous

Conditions 1 and 2 arise from the fact that measurements (expectation values) of position (x) and

momentum (py) should be unique and finite. If d—w is finite, then 1 (x) is continuous; and since
X

dy
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5~ 1s finite which implies that d_w 1s continuous.
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Example I: Free particle (V(x) = 0) with energy E

The time-independent Schrodinger equation becomes
0y
2m dx’

~Ey =0

The solutions are

L pomEx _L X
Y = Ae” +Be "

The time-dependent wave function is

Wx=pe

_ Ae;(MX—Et) + Be—;(JZmEAWEt)

For a wave traveling in the +x-direction, B = 0, thus
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Example II: Particle of energy E incident from the left on a potential barrier of height V,

(E>V,)

A
v
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Solve the Schrodinger equation in regions 1 and 2; then demand continuity of 1 (x) and d_lp at
X

x = 0 to match the solutions. In region 1
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where k, = n
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In region 2
_h2 d2lp2 ik, x —ik 5 x
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where k, = L)

h
Now try to find the constants by applying the continuity conditions at the boundary. Also note
that D = 0 since the wave in region 2 only propagates to the right.

1/)1 x=0 = 1/)2

dy,|  _dy,| = ik,(A- B) = ik,C
dx |x=0 dx |x=0

X=0:>A+B=C

Find B and C in terms of A
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In principle, A should be determined by applying the normalization condition on v , but for
unbounded traveling wave solutions it’s a bit tricky. Instead find the probability of the particle
being transmitted and being reflected. The reflected wave is given by Be ™" in region 1. Let us
look at the ratio of the reflected wave amplitude divided by the incoming wave amplitude.
B_k-k
Ak +k
Remembering that the particle probabilities are related to the i * 1 , we need to look at (%)2 to

get the probability of reflection.
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More care needs to be taken in the case of the transmission coefficient. We really need to know

the flux of the particles incident on the barrier. Current density is the flux of the charge density

- \
(] = pv , so likewise we need to multiply the probability density by the velocity of the particle

hk
(given by L_ —). Therefore we need only to multiply the probability density by k in a given
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region. Thus
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You may verify that R + T = 1.

Kronig-Penney Model

Given a one-dimensional lattice of length L and E <V
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Felix Boch showed that the solutions to the Schrodinger equation for a periodic potiential are of
the form y (x) = e u(x) where u(x) = u(x + d)

Transforming Egs. 1) and 2) into differential equations involving u(x):
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Define o = —— B = mV, —E) . Then 1 and 2 become

"
1)) u'+ 2iku +(a® = k*)u, =0 forO<x<a
2°) uy+2iku, — (B> +k*u, =0 for -b<x <0
and the solutions are

—ikx+i e
u(x) = Ae ™" + Be™™™ forO<x<a

uy(x) = Ce™ P 4 De™™ P for -b<x<0

The boundary conditions are

u,(0) =u,(0) u(a)=u,(-b)=u,(a)
du, =%L du | _du)| _ du|
dx|, dx dx |a dx |_b de

Substituting u; and u, into the boundary conditions gives:
3) A+B=C+D
4) (-ik +ia)A +(-ik—ia)B = (-ik + B)C+ (-ik - B)D



5) Ae—ika+i(m + Be—ika—iaa — Ceikb-ﬁb + Deikb +pb
6) (-lk + l-a)Ae—ika +iaa +(_l-k _ l-a)Be—ika -iaa _ (-lk + ﬁ)Ceikb - b + (-lk _ ﬁ)Deikb + Bb
Set the determinant of the coefficients equal to zero so that a non-trivial solution exists (by

Kramer’s Rule) gives:

22 ;{ [?2 sinh(pb) sin(:a) + cosh( b )cos(xa) = cos(k(b + a))
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Let b>0 and V> such that bV, = constant = fb—>0. Remember that § = —

Take the limit of 9 as fb—>0. In the limit, 9 becomes

B*b .
—sin(aa) + cos(oa) = cos(ka)
8) 2a
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or P sin(ca) +cos(ca) = cos(ka) where P= ap b

oa

The graphical solution is

Solutions are found for values of aa in the cross-hatched areas. Conclusion: Energy bands exist

in periodic structures.

Particle in a box

Assume infinite potential barriers at x =y =z =0 and x =y =z =L (box has side L and volume

L*). Inside the box, the Schrodinger equation becomes
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Assume that
Y(x,y,2) = f(X)g(y)(2)
“ﬁ{£+i+ﬂhﬂ=0
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Since this is true for all values of x, y, and z in the box, then
ﬁ = _ kx2
f

Sfx) = Asin(kxx) + Bcos(kxx)
fO)=fL)=0=B=0

Asin(k L) =0 =k L=nm=k, = ”Z”

Similarly for g(y) and h(z)
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Find B by normalization

- {4 52
.B=/2f
L

Substituting ¥ into the Schrodinger equation we get
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T2 (n, +n; +n;) where n,n, and n_ are all positive integers
2 2 2 2 . . . .
Define n” = n; +n, +n; so that n is like the radius of a sphere in n-space.
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Now the number of energy states between E and E + dE is equal to dN where

Amn®

dN = dn

(volume of a spherical shell of thickness dn in the first quadrant).
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It will be useful to define a density of states per unit energy given by

dN 1 [2mDl ]

i . Ez

dE ~ 47’ | n® |
Because electrons can have either spin of +3 or - 3, each state denoted by a value of n can
contain 2 electronic states. Multiplying by 2 gives the density of states per energy for electrons

as
1 [2ml2]
9) =T
dE " 27| n® |
Now consider the density of states/unit energy/unit volume (in a cube of volume L*) given by
LN _ 1 [2m)°
L'dE 27° | 7]
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(Note that L drops out so the shape of the box is unimportant)
It is now possible to calculate the concentration of the electrons (number/unit volume) by
integrating over all the possible energies and including the probability that a given energy state

will be occupied. This probability is the Fermi-Dirac distribution.
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(note the different n, f,, =Fermi-Dirac distribution)
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Semiconductors

Now let us apply this formalism to semiconductors. At low temperatures a semiconductor acts
like an insulator because the Fermi energy lies in the band gap, implying that the valence band is

filled and the conduction band is empty.

Conduction Band

LSS e

band gaiw energy

Wi

Valence Band

Conduction takes place when an electron is free to move to a new energy state. Since the
valence band is filled (at low temperatures), no conduction is possible. As the temperature
increases, the thermal excitation can excite some electrons into the conduction band, leaving
behind vacant states, or holes, in the valence band. Now conduction can readily take place since
states are available for electrons to move into. This explains the increasing conductivity of
semiconductors with increasing temperatures.

Let’s assume that densities of states similar to equation 11 (pg. 9) exist at the conduction

and valence band edges, but referenced with respect to Ec and Ey, respectively.

‘;ZI =212(2£Ze)2(E—ECﬁ for E. < E <o and
Ec T
) (o) ) eeer
Ey

The rationale for assuming a similar density of states in the conduction band is that the electrons
are essentially free there (ie. no potentials), just as they were in the box. This allows us to use a
similar state density. Clearly this isn’t the correct density to use for energies approaching

infinity, but since the Fermi-Dirac distribution approaches zero there, errors should be small. It
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is not quite so easy to argue that this is OK to do at the valence band edge. It depends on a so-
called ‘negative mass’ behavior of the electrons at the top of an energy band.

To calculate the electron concentration in the conduction band (from equation 12)

3 L
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define E'=E-E,. and dE' =dE ..0 < E' < so equation 13 becomes
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At room temperature kT = 0.026eV. For lightly doped Si, (Ec — Eg) = 0.5e¢V which says that the

Fermi-Dirac distribution can be approximated as follows

1 1 _(E’+E(*—El:)
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1+€ kT e kT

Now equation 14 can be written as

1 [2m, f lctr) o

1y
13)n=2ﬂ2[7j e j;E e "dE

From the CRC tables

f: E¥e TdE' = (KT)

Then equation 15 becomes
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Nc is called the effective density of states at the conduction band edge.
The hole concentration in the valence band (denoted by p) can be found by remembering
that the probability of finding a hole is [1 — (the probability of finding an electron)]. Thus the

Fermi function is modified for holes
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Then it follows that

2 ]
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An intrinsic semiconductor has no doping impurities, therefore n = p = n;, where n; is the intrinsic
electron or hole concentration. This must be the case since each electron in the conduction band
leaves a hole behind in the valence band. An extrinsic semiconductor has been doped so that extra

holes or electrons are present. Thus n = p. From equations 16 and 17 it is clear that

(Ec-Ey)

16) n’ = N.Nye 7
Notice that the right side of this equation is a constant at a given temperature so that even for
extrinsic semiconductors

17) np = nl2
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Special Homework Problems

1. A wave function is given by

Y(x)= ACOS(E) fora<x=<3a
2a
Y(x)=0 forx <aand x > 3a
Find the constant A so that i is normalized.
2. Use the wave function from problem 1 to find {x), the expectation value of position, and
(px) , the expectation value of momentum. Do your results make physical sense? Explain.

3. A particle is in a one-dimensional box with finite barrier heights (see figure). The total

energy, E, of the particle is less than the barrier height, V.

Energy 4
Region 1 Vo Region 2 Vo Region 3
X=-a x=0 X=a X

Find the probability that the particle is outside the box for the lowerst energy state (i.e. the

particle lies outside —a < x < a). You will find it useful to make the following definitions:

nk, = JZm(V, - E)

hk, = N2mE
In region 2, the general form of 1 is Ce™* + De™™** . Show that

C2

C
D

D

C

., D

4. Graphically solve equation 10 (pg. 7) to find the allowed energy ranges when the product
bV, =10eV-A = 1.6x10%*]-m and a = 4A. Express your answers in eV. Assume that the

particles involved are electrons.
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5. Plot the Fermi-Dirac distribution function with Ex = 0.5eV at temperatures of 0, 50, and
300K. Plot fp(E) vs. E.

6. Use your results from problem 5 to evaluate equation 12 (pg. 9). Then, assuming that the
concentration of conduction electrons in Cu is 1 e/atom, find the value of the Fermi energy at
0 Kelvins. Do you expect this value to change much at 300K? Explain. (You only need to

evaluate the integral in equation 12 for a temperature of 0 K; this simplifies things greatly!)
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