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Abstract

Programmable parts orienting is an important capa-
bility for flexible automation systems. Here we study
how a part grasped in an unknown orientation by a
force-controlled robot can be oriented by a sequence
of push-align actions against a wall followed by sen-
sor measurements of the distance from the grasp point
to the wall. This paper concentrates on three issues:
planning a sequence of actions to orient a part, explor-
ing design changes that enable the part to be oriented
in fewer steps, and the effect of shape uncertainty, due
to manufacturing tolerances, on part orientability.

1 Introduction

Programmable automation is important in achiev-
ing flexible manufacturing and shortening product de-
velopment cycles. A necessary capability is parts ori-
enting, where parts in a bin or on a conveyor are to be
oriented. We would like programmable parts orienting
systems that automatically determine a sequence of
actions to be executed by fence aligners and grippers,
and use sensor data from beam sensors and distance
sensors to orient a part. Since these tasks are repeated
thousands of times, reducing the number of steps to
orient a part can significantly reduce costs.

We are interested in the class of manipulation tasks
where forces on a part act about a point with mea-
surable location, and the results of a manipulation
operation are determined by shape interactions. In
particular, we explore the use of pushing actions cou-
pled with distance measurements to orient polygonal
parts grasped by a robot at a known point in an un-
known initial orientation. When the part is grasped
by a force-controlled robot with the compliance cen-
ter at the grasp point, we can determine its orienta-
tion by performing a sequence of pushing operations
against a wall and measuring the distance of the grasp
point to the wall. We explore this parts orienting by
push-aligning task both as a planning problem of how
to select an appropriate sequence of actions, and as
a design problem of where to locate the grasp point
for optimal orientability. Further, we investigate the

effect of shape uncertainty on part orientability.

1.1 Example tasks

Consider a parts feeding robot that uses an over-
head camera to determine the orientations of parts as
it picks them up from a conveyor. Parts in stable ori-
entations with identical horizontal silhouettes cannot
be oriented by the vision system (Figure 1). If the
robot is force-controlled and the part has a uniform
vertical cross-section, a sequence of pushing actions
with the compliance center at the grasp point can de-
termine the part orientation. These actions can be
performed by the robot en route to the parts pallet.
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Figure 1: Two stable orientations of the part (shown
in side view) cannot be distinguished by an overhead
camera. A single push-align operation, consisting of
a rotation and a compliant push, followed by a sensor
reading, can determine the part orientation. The black
dot indicates the grasp point.

A more complex orienting problem occurs when a
3-d part has a varying cross-section so different cross-
sections can simultaneously contact the aligning sur-
faces; contact forces can no longer be treated as occur-



ring in the plane. A part grasped in a robot’s fingers
that is compliantly rotated by pushing it against a
fixture is another example where forces act about a
point and compliant motions can orient the part. The
example of Figure 1 requires a plan to orient the two
cross-sectional shapes that are mirror images of each
other. As a step towards orienting parts with different
shapes, in this paper we focus on the task of orienting
a single planar object grasped at a known point in an
unknown orientation.

2 Orienting by Push-aligning

We consider here the problem of orienting a planar
object, grasped at a known point in an unknown ori-
entation, by pushing it against an aligning wall. The
object is defined to be oriented when a known edge is
aligned with the wall. The grasp point is assumed to
be determined from a feature of the part, for example,
a peg that triggers a beam sensor on a conveyor. Us-
ing a force-controlled robot, we specify the compliance
center to be at the grasp point; the object is held so
it does not rotate relative to the gripper.

The goal is to orient the object through a sequence
of push-align operations; a push-align operation con-
sists of rotating the object by a chosen angle and push-
ing it in a direction normal to the wall to align it, fol-
lowed by a measurement of the distance from the peg
to the wall. The object rotates about the compliance
center at the peg until an edge is aligned with the
wall. The peg location determines which object edges
are stable; a stable edge is an edge that becomes stably
aligned with the wall when pushed against it. Since
the wall is at a known location relative to the robot,
the distance of the peg from the wall after a push can
be determined from the gripper position. This inex-
pensive sensor data provides incomplete information
on the object orientation.

We make the following assumptions:

e All objects are polygons, and have a feature, such
as a peg or a shaft hole, at which they are grasped.

e The compliance center is located at the grasp
point, referred to as the peg for convenience.

¢ All motions are in the plane and are quasi-static.

e The robot pushes the object in a direction normal
to the wall.

To determine the result of a push-align operation,
we follow Goldberg [8] in using the radius function.
The radius function (Figure 2) describes the distance
from a point in the polygon (the peg) to a tangent line
to the polygon at a given angle (the wall). To pre-
dict the final orientation of the polygon when pushed
against a wall in a given initial orientation, we note
that all initial orientations between two consecutive
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Figure 2: The radius function for the rectangle with
its peg position indicated by the black circle.

local maxima of the radius function map to their en-
closed local minimum. This resulting minimum ra-
dius is the perpendicular distance of the peg from the
wall and the corresponding angle provides the orien-
tation that results from the push-align operation. In
the following discussion, the resulting radius and the
peg-to-edge (perpendicular) distance are equivalent.

The push-sense function (Figure 3) is another rep-
resentation of the result of a push-align operation; it
describes the radius resulting from a push for a given
initial orientation of the object relative to the wall. If
the resulting radii are all unique and can be distin-
guished in the presence of sensor noise, the orienta-
tion of the object can be determined in a single step.
However, if some of the resulting radii cannot be dis-
tinguished by the sensor, a sequence of steps may be
necessary to orient the object.

Our goals are to find plans to orient parts, and to
minimize the number of steps to orient them. This
leads to the following two problems:

1. The planning problem: Given a part with a
specified peg position, can we generate a plan to
orient it?7 How many steps are required to orient
the part?

2. The design problem: Given the design freedom
to choose the peg location on a part, which peg
locations require the least number of operations
to orient the part?
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Figure 3: The push-sense function for the rectangle
of Figure 2. The resultant orientation on a step is
indicated by a tick mark.

2.1 Related Work

Boothroyd et al. [1] describe parts feeding and ori-
enting devices for automated assembly. Whitney [20]
describes the use of compliance centers in assembly
tasks. Mason [12] studied pushing in manipulation
operations and derived a rule to predict the rotation
direction of a pushed object. Using these results, Mani
and Wilson [11] developed a planner to use pushing ac-
tions to orient polygonal parts and Brost [2] planned
single-step grasps of polygonal parts with a parallel-
jaw gripper. Peshkin and Sanderson [14] considered
part orienting by a sequence of oriented fences. Gold-
berg [8] developed a planner for sensorless orientation
by grasping.

Grossman and Blasgen [9] used a vibratory tray to
bring a part to a finite set of orientations which were
then discriminated using a probe. Taylor et al. [19]
studied planning of sensor-based manipulation strate-
gies using AND/OR search. Rao and Goldberg [16]
investigate recognition and orientation of objects by
frictionless parallel-jaw grasping coupled with jaw di-
ameter sensing. Canny and Goldberg [4] advocate the
use of simple sensors and actuators in industrial tasks.

Natarajan [13] focused on computational issues in
automated design of sensorless parts feeders. Erd-
mann [7] describes a procedure to design sensors based
on the actions. Caine [3] considers the design of inter-
acting part shapes to constrain motion and applies it
to a vibratory bowl feeder track.

Requicha [17] discusses issues of tolerancing for part
design and manufacture. Donald [6] treated model
errors by extending the configuration space to include
dimensional variations.

3 The planning problem: Generating
orientation plans

We show that it is possible to orient parts by sensor-
less and sensor-based push-align operations, and de-
termine the number of steps required in each case.

3.1 Sensorless orientation plans

To orient the part without sensors, we must find a
sequence of push-align actions that brings all initial
orientations to the same final orientation. The push
function [8] is another representation of the push-align
operation that describes the resulting object orien-
tation as a function of its initial orientation. Gold-
berg [8] developed a backchaining algorithm for sen-
sorless orienting of a polygon by frictionless parallel-
jaw grasping. Due to the similarity between the push-
align task and the grasping task, the backchaining al-
gorithm can be applied to the push function to derive a
minimum length sensorless plan for orienting the part
by push-aligning. Chen and Ierardi [5] showed this al-
gorithm is guaranteed to find a solution of O(n) steps,
where n is the number of stable edges of the object.

3.2 Sensor-based orientation plans

We now consider generating an orientation plan
when the distance of the peg from the wall is mea-
sured after every push. When the peg has a unique
distance to every edge, a single push-align operation
determines the object orientation. Otherwise, we need
a plan consisting of a conditional sequence of push-
align operations to orient the object; branching dur-
ing execution occurs based on the sensor value. We
assume that there is at least one peg-to-edge distance
with a unique sensor value; otherwise the part may be
orientable only up to symmetry.

A push-align operation is indexed by the angle the
object is rotated through before being pushed. The
push-align actions can be divided into equivalence
classes such that all member actions of a class result
in the same orientation. The equivalence classes are
found by moving a copy of the radius function past
a stationary copy, and noting all angle ranges over
which a minimum lies between two successive max-
ima. A representative action is selected for each class,
taking care that it is deterministic.

Search procedure: To find an orienting plan, we
perform a breadth-first search of an AND/OR tree
([18]). A node in the tree contains the set of orienta-
tions consistent with the push-align operations along
the path to the node. An operation corresponds to
a push-align action followed by a sensor reading. All
links are AND links; the AND link from a node for
a given operation points to a set of child nodes, each



of which contains a set of orientations indistinguish-
able from their sensor values. A node with a single
orientation is a goal node.
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Figure 4: A plan to orient the rectangle of Figure 2.
The sensor value shown at a node indicates the peg to
wall distance for the possible orientations at that node.
Goal nodes, shown shaded, have a single orientation.

Search begins at the root node, at which all ob-
ject orientations are possible. The first push-align
operation results in a set of nodes corresponding to
the indistinguishable sets of stable orientations. For
each non-goal node, the search proceeds in a breadth-
first manner by applying each representative opera-
tion, and generating the corresponding set of child
nodes. Whenever a goal node is found, this infor-
mation is propagated up the search tree. A node is
placed on the goal path when all its child nodes from
an operation are on the goal path. Search terminates
when the root node is placed on the goal path. The
plan recovered from the goal path corresponds to a
conditional sequence of operations to determine ob-
ject orientation; the sensor values determine branch-
ing (Figure 4). The search is guaranteed to terminate
if the set of operations can distinguish any two stable
orientations.

Number of operations required to orient an
object: The worst-case number of operations re-
quired to orient an object determines the depth of the
search tree. Consider a representation of the push-
sense function as a deterministic finite state machine.
Each step of the push-sense function can be viewed
as a state encoded by its height, angle range, and re-
sultant orientation; the states have a cyclic arrange-
ment, and only the step height can be sensed. Then
identifying a sequence of operations to determine the
object orientation is the same as identifying an adap-
tive homing sequence ([10]) for this finite state ma-
chine. Since the operations guarantee any state can be
reached from any other state, in the worst case it takes
a sequence of m operations to determine the machine
state, where m is the maximum number of indistin-
guishable states. So the number of steps to orient a

part is never greater than the maximum number of in-
distinguishable peg-to-edge distances. We conjecture
that the problem of finding the shortest sequence of
operations to orient a part is NP-complete.

4 The design problem: Where do we
place the peg?

We now explore changes to task geometry that en-
able the object to be oriented in fewer steps. That
is, where do we place the compliance center to orient
the part efficiently? If every edge of the object is at a
unique distance from the peg, the robot can determine
the object orientation from sensor data after a single
push. So, can we determine peg positions that enable
single-step orientation of an object?

First consider an object whose edges are all sta-
ble. To differentiate two edges of the object in the
presence of sensor noise, their peg-to-edge distances
should differ by an amount greater than the sensor
noise; this is the distance constraint. For two edges ¢
and j with peg-to-edge perpendicular distances d; and
d;, and a maximum sensor noise of ¢, the distance
constraint for the two edges is |d; — d;| > €,. Any
region in the polygon interior that satisfies the dis-
tance constraints for all pairs of stable edges is a peg
placement region with unique peg-to-edge distances; a
single push-align operation determines the object ori-
entation. The union of all regions in which all n stable
edges can be distinguished is the n-discriminating re-
gion. See Figure 5 for an example.

Figure 5: The n-discriminating region of the rectangle
is shown shaded. ¢ is 2% of the longest object edge.

Now consider an object with unstable edges. Each
edge is stable for a region of peg positions; this edge
stability region consists of points in the object interior
that lie between the inward normals to the edge at its
vertices. The regions obtained from the planar subdi-
vision ([15]) of the edge stability regions are the edge-
subset stability regions; a subset of the edges are stable
for each such region. Within each edge-subset stabil-
ity region, we generate the distance constraints for all



pairs of member stable edges, and find the subregions
that satisfy the distance constraints. The union of all
these subregions is the n-discriminating region.

There is a hierarchy of discriminating regions based
on the number of uniquely distinguishable stable
edges. In a k-discriminating region, at least k edges
can be distinguished from their peg-to-edge distances
(Figure 6). Just as an n-discriminating region guaran-
tees a single-step plan, a k-discriminating region guar-
antees a plan of (n — k) steps or less, for k < n. As k
decreases, the size of the region increases, but so does
the worst-case plan length. For k > 1, the object can
always be oriented.
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Figure 6: The 2-discriminating region of the rectangle.
€s is 2% of the longest edge.

5 Shape Uncertainty

Parts manufactured to tolerances have variations
in shape. We wish to find plans that can orient the
range of part shapes permitted by bounded shape un-
certainty; here we present some preliminary results.

5.1 Shape uncertainty model

We model shape uncertainty as follows (Figure 7):

e There is uncertainty in peg and vertex positions;
we consider only convex polygons.

e The peg lies inside a circle of radius r, centered
at the nominal peg location.

e FEach vertex lies inside a circle of radius r, cen-
tered at the nominal vertex location. The vertex
uncertainty circles do not intersect.

e The actual object edges are straight lines between
the actual vertex positions.

5.2 Effect of shape uncertainty

Peg and vertex position uncertainties lead to un-
certainties in the peg-to-edge distances, edge orien-
tations, and transition angles between edges. These
cause uncertainties in the step heights, step widths,

<=

Figure 7: Shape uncertainty: The peg and vertex posi-
tions lie inside the uncertainty circles at their nominal
locations. Step width w is (Bew + Becw £ Cew £ Cecw),
transition angle uncertainties are fa., and Lo cy,
edge orientation uncertainty is +7, and edge position
uncertainty is £, .
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Figure 8: Push-sense function with uncertainty. Step
height uncertainty is +(r, + ), transition angle un-
certainties are .y and £y, resultant orientation
uncertainty is +7.

and resultant orientations in the push-sense function
(Figure 8). To determine when it is possible to orient
a part with shape and sensor uncertainty, we ask the
following questions:

1. Are there peg placement regions for single-step
orienting with shape and sensor uncertainiy?
For a single-step plan to exist, the peg-to-edge dis-
tances of the stable edges should be distinguishable
despite sensor noise and uncertainties in peg and ver-
tex positions. So the distance constraint for edges i
and j is now given by |d; — d;| > (e, + rp + ). Each
edge-subset stability region is shrunk where it inter-
sects the uncertainty expanded edge stability regions
of unstable edges to ensure such edges cannot be sta-
ble. We then determine the discriminating region of
this shrunken edge-subset stability region using the
distance constraints for the stable edges. The union of
these discriminating regions over all edge-subset sta-
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Figure 9: n-discriminating region with shape and sen-
sor uncertainty. €, rp, and r, are 2%, 1%, and 2% of
the longest edge.

bility regions is the n-discriminating region (Figure 9).
Peg placement in this region provides a single-step ori-
entation plan.

2. Can multi-step deterministic plans exist with un-
certainty in the push-sense function?
Angle uncertainties in the push-sense function make
some actions non-deterministic. To find deterministic
plans, we identify deterministic actions that permit
any stable orientation to be reached from any other
stable orientation, and enable any set of states with in-
distinguishable sensor values to be distinguished. The
deterministic action ranges are obtained by shrink-
ing the nominal action range for uncertainty. The
maximum angle uncertainty pmaz 18 (Ymaz + ®maz)-
When the maximum number of indistinguishable sta-
ble states is m, and the smallest step semiwidth is
Bmin, if Bmin > MPmaz, a deterministic plan exists.

3. Can we find peg placement regions that permit
multi-step plans in the presence of uncertainty?
A multi-step plan is guaranteed to exist despite un-
certainty when there is a non-null intersection of a k-
discriminating region with the peg placement region
that provides the desired uncertainty bounds in the
push-sense function. Within each edge-subset stabil-
ity region, the bounded uncertainty region exists when
the following conditions are met.

(a) Only edges in the edge-subset are stable: We
want regions in which the stable edges are guaranteed
to be stable and the unstable edges are guaranteed to
be unstable. From the uncertainty shrunken edge sta-
bility regions of the stable edges and the uncertainty
expanded edge stability regions of the unstable edges,
we compute the regions in which only the desired set
of edges is stable.

(b) The step semiwidths in the push-sense function
have minimum magnitude 3,,;,: The step semiwidths
Bew and Peew (Figure 7) depend on the peg location
relative to the corresponding stable edge. The region

S

Figure 10: Peg placement region that guarantees ex-
istence of multi-step plans. €, rp, and r, are 2%, 1%,

and 2% of the longest edge, k¥ = 2, Bmin = 18, and

Umae = 9.

of peg positions in the polygon interior bounded by
two lines at the edge vertices, each making an inward
angle to the normal of §,,;,, satisfies this constraint
after it is shrunk for uncertainty.

(¢) The transition angle uncertainties have maxi-
mum magnitude &q,: When the peg is near a ver-
tex, small positional uncertainties of the peg or ver-
tex cause large uncertainties in the transition an-
gle between edges. The transition angle uncertainty
exceeds the maximum transition angle uncertainty
mar Within a circular sector at the vertex of radius
(rp + 74)/sin(mas ). The polygon interior region ex-
cluding this circular sector expanded for uncertainty
guarantees bounded transition angle uncertainty for
the vertex.

Within each edge-subset stability region, the inter-
section of the above regions generated for every vertex
and stable edge gives the region that bounds angu-
lar uncertainties in the push-sense function. For each
edge-subset stability region, we compute the intersec-
tion of this bounded uncertainty region with the cor-
responding k-discriminating region; the union of all
these regions is the region of peg placements that per-
mit multi-step orienting of the object with shape and
sensor uncertainty.

6 Conclusion

A study of the relationship between actions that
modify part configurations and sensory operations
that provide limited information on part configura-
tions is important for parts orienting tasks. We have
studied a simple task of orienting parts by a sequence
of push-align actions and distance measurements. We
have seen that both sensorless and sensor-based plans
exist, and that the sensor-based plans require fewer
steps to orient a part. We have also explored the use
of design freedom in locating the compliance center to
generate single-step orientation plans. Under certain



conditions, the planning and design solutions can be
extended to handle shape uncertainty.

The push-align task has a structure similar to the
task of orienting objects by frictionless parallel-jaw
grasping using a jaw diameter sensor [16]. We wish
to exploit these similarities in the context of find-
ing shortest plans, and orienting parts with different
shapes. We would like to extend this work to handle
parts with curved edges, and explore part orienting
when the grasp point is unknown, as when parts are
picked up by a vacuum gripper.
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