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Abstract

To rapidly feed industrial parts on an assembly line, Carlisle et. al. [7] proposed a flexible part feeding system
that drops parts on a flat conveyor belt, determines position and orientation of each part with a vision system, and
then moves them into adesired orientation. A robot arm with 4 degrees of freedom (DoF) is capable of moving parts
through 6 DoF when equipped with a passive pivoting axis between the parallel jawsof itsgripper. Theideaisto grasp
apart with 2 hard finger contacts such that it pivots, under gravity, into a desired orientation when lifted and replaced
on the table. We refer to these actions as pivot grasps.

This paper considers the planning problem. Given a polyhedral part shape, coefficient of friction and a pair of
stable configurations as input, find pairs of grasp points that will cause the part to pivot from one stable configuration
to the other. For some transitions, pivot grasps may not exist. For a part with n faces and m stable configurations,
we give an O(m>n log n) agorithm to generate the m x m matrix of pivot grasps. When the part is star shaped, this
reduces to O(m?n). We also study a generalization that considers “capture regions’ around stable configurations.
Both algorithms are complete in that they are guaranteed to find pivot grasps when they exist.

1 Introduction

Achieving a desired spatial configuration of a part is a fundamental issue in robotics. For example, consider a part
resting stably on aflat table. After the part is grasped in a known configuration by a robot arm, inverse kinematics
can be used to achieve adesired fina configuration of the part. This assumes that the grasp does not slip and that the
final configuration of the part is reachable by the robot. Noting that such conditions are not always met, Tournassoud,
L ozano-Perez, and Mazer proposed planning a sequence of regrasping operationsthat replace the part on the tablein
intermediate configurations, thereby allowing the robot to achieve a better grasp. In the presence of obstacles, they
showed how to plan regrasping operations for a 6 DoF robot arm by dlicing C-space but did not provide a complete
algorithm [29].

Automating the grasp analysis is useful for rapid set-up of a parts feeding system using vision and a robot ma-
nipulator [7]. An efficient algorithm is particularly useful when incorporated into a solid modelling package: as the
designer creates anew part, he or she can immediately test the “feedability” of this part, perhaps modifying the shape
accordingly.

In anindustrial setting where cost, accuracy, reliability, and speed are paramount, Carlisle et al. [7] considered a
SCARA-type arm with only 4 active DoF to feed a stream of partsarriving on aconveyor belt (see Fig. 1). Four degree
of freedom manipulators, such aSCARA arm or Automatix Robot World module, are kinematically limited to orienting
parts about the vertical axis. However, as we will show in this paper, any orientation can be achieved whenthearmis
equipped with a passive pivoting axis between the parallel jaws of its gripper.

Achieving an arbitrary part position and orientation using amanipul ator with fewer than 6 DoF may appear counter-
intuitive at first. For the type of arms considered in this paper, trand ations and rotations are easily separated, so only
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Figure 1: The Flexible Part Feeder described in Carlisle et al. A 4 DoF robot arm and vision system for feeding poly-

hedral parts.



rotations will be addressed. It is well known that any 3D rotation can be decomposed into three sequential rotations
(e.g. Euler anglesor roll-pitch-yaw). Now consider affixing threeinitially aligned coordinate systems to the gripper, to
theworld, and to the part with the Z axis pointing vertically and the Y axis in the direction of the pivot axis. The part
isinitially ungrasped. The sequence of operations considered hereis:

1. Rotate the gripper about the vertical Z axis.

2. Grasp the part and lift it.

3. Thegrasped part is rotated about the horizontal pivot axis.
4. Rotate the grasped part about the vertical axis.

Thisfour step procedureis equivalent performing threerotations(i.e. Z, Y and Z rotationsin the gripper frame). Note
that the first and last rotations are independent because of the changein the grasp condition. During thefirst Z rotation,
the part moves with respect to the gripper but not with respect to the world. Whereasin the fourth step, the part does
not move with respect to the gripper but moves with respect to the world frame. The change due to grasping the part
is a non-integrable constraint making this a non-holonomic system as noted by Koditschek [18, 19].

Thegripper isequipped with two hard finger contactsfor grasps on the part. In Step 1, the gripper isrotated so asto
correctly position and orientation the fingers; now squeezing the fingers establishes contact which also establishes the
grasp axissinceit smply istheline connecting the two contact points. Given the center of gravity of the part, the grasp
axis, in turn, determines the magnitude and direction of the unactuated pivot rotation in Step 3. After stabilization, the
part isfinally rotated about the vertical Z axisto complete the triad of rotations.

We assume that each part is dropped onto the conveyor belt in isolation (we do not address the related problem of
singulating parts). When rotations and trandlations in the plane are ignored, the part generally assumes one of afinite
number of stable poses [22]. For a polyhedron P with n faces, a pose is stable when the center of gravity lies above
the face of the convex hull 7 which contacts the support plane. In this paper, we consider pivot graspsthat move apart
from an initial stable configuration s to afinal stable configuration f. The decision question is whether or not asingle
pivot grasp can accomplish this task: for thiswe giveaO(n log n) time solution.

Using a particular class of grasps, it may not be possible to move the part between an arbitrary pair of stable con-
figurations in a single pivot operation. Considering each stable configuration as a node in a transition graph and the
particular action that will movethe part between stable configurationsas directed arcs, adirected graph can be defined.
A path through this transition graph represents a plan which moves the part from some initial to final configuration,
each edge in this path corresponding to a single pivot grasp.

If thetransition graph is complete (an edge exists between any ordered pair of nodes), then only single pivot grasps
need be considered. However, the transition graph may not be complete. For example, it may beimpossibleto reorient
apart such asapyramid resting on its base if the coefficient of static friction istoo small. Similarly, it is not generally
possibleto rotate apart from onefaceto aface with an anti-parallel normal using asingle pivot grasp. However, it may
be possible to move a part between any pair of configurations using a sequence of pivot grasps.

Wefirst consider a set of graspswherethe part’s configuration prior to set-downis exactly the desired final configu-
ration. Werefer to these as“ exact” pivot grasps. We show that the transition graph can be constructedin O(m2n log n)
time where n is the number of faces of P, and m < n isthe number of stable faces on 7. The agorithm is complete
in the sense that whenever a sequence of exact pivot grasps exists, we are guaranteed to find it [14].

Notethat thetransition graph may not be strongly connected for thisclass of grasps; asequence of exact pivot transi-
tions between certain pairs of stable configurationsmay be impossible. Furthermore, even within a strongly connected
component, the shortest sequence of transitions between a certain pair of nodes may be too long to be acceptablein
practice. Therefore, with aview to improve connectivity in our transition network, we next consider a broader class
of grasps. We note that when a part is placed on a supporting plane in a pose that is not stable, the force of gravity
will cause the part tumble onto one of the stable configurations. By explicitly computing the set of configurations (a
capture region) which converge to a particular pose, the pivoting operation is only required to bring the part to within
the captureregion. Since all stable configurations are contained within a captureregion, thisis aricher action set, and
therefore the graph will have better connectivity. We call these “ capturing” pivot grasps.

We begin below by reviewing related work and then define the problem and state our assumptions in Section 3.
Theory common to both types of pivot graspsis discussed in Section 4. Exact pivot grasps are covered in Section 5,
and capturing pivot graspsin Section 6. We implemented the exact planner as described in Section 5.1.



A paper based on this report was to a specia issue on “Assembly and Task Planning for Manufacturing” of the
|EEE Transactions on Robotics and Automation. A condensed version is submitted to the 1995 |EEE International
Conference on Robotics and Automation.

2 Related Work

Our results build on prior research in robot motion planning and grasp planning; excellent reviews can be found in
[15, 26]. We consider grasps with two frictional point contacts, also known as hard finger contacts [28]. Each contact
allows forces pointing into the associated friction cone. Clearly, such agrasp cannot achieve form closure: the part is
freeto rotate about the contact axis. For planar smooth objects, Faverjon and Ponce[11] and later, Blake[3], considered
computingfrictional two-finger force-closuregrasps. To achieveform closure, Markenscoff et al. [ 24] showed that four
hard finger contacts are necessary and sufficient for planar objects and that twelve were sufficient (seven are necessary)
to grasp 3D piecewise-smooth objects without rotational symmetries.

However for reorienting parts we do not require form closure; we must insure that the part will not trandlate when
lifted but will in fact rotate about the grasp axis. In other words, we wish to control certain motions while preventing
others. Brock [4] also considered controlled motions under grasp: given an external grasp on an object, represented
as contact forces and torques, what are the (infinitesimal) motions possible? However, he does not study synthesizing
graspsfor adesired motion. Trinkle and Paul [30] used controlled slip to gain an enveloping grasp of apartinitialy in
contact with aflat support surface by squeezing contacts with a two fingered hand.

For polyhedral parts, Erdmann et al. [10] showed how to tilt an infinite plane to orient a given polyhedral part,
regardlessof itsinitial orientation. Both Akellaand Mason [1] and Lynch [23] addressed the planar problem of planning
a strategy to move a part from a known pose into a desired final pose using a sequence of pushing operations.

One goa of dextrous manipulation is to reorient a part while it is held in the hand [12]. In a multi-fingered hand,
a subset of fingers grasp the part while the other fingers move to a new grasp location. After establishing a stable
grasp, thefirst set of fingersisfreeto be relocated to anew grasp. Sincethisisanalogousto “walking” acrossthe part,
such strategies are sometimes referred to asfingergaiting [17, 27]. Our approach uses a modified parallel-jaw gripper,
gravity, and the support surface to achieve asimilar goal.

3 Problem Statement

Consider the robot work cell in Figure 1; we make the following assumptions in devel oping our algorithms:

Theworktableis aflat plane orthogonal to gravity at a known height.
The parallel-jaw gripper is able to trandate with 3 DoF and to rotate about the gravity vector.
The gripper has a passive degree of freedom — apivot axis paralldl to the support plane.
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The part is presented to the gripper in isolation. A sensing system (e.g. vision, light beams [31]) determinesits
exact initial configuration.

5. Thegripper simultaneously makestwo “hard” contacts with the part — point contacts with friction which permit
rotation about the pivot axis. We assume that the part will rotate due to gravity and quickly stabilize with its
center of gravity below the contact axis.

Theinput to the algorithmis:

e A polyhedra part P stored as aboundary representation (B-rep).

e Thepart's center of gravity taken to be the origin of the coordinate system used to define the B-rep.

e The coefficient of static friction psgagic-

A pivot grasp is accessible if both contact points are accessible in the direction of the grasp axis, i.e. they can be
reached by fingertips moved in from +oo along the grasp axis. A grasp isvalid for agiven coefficient of static friction

Istatic 1T it isaccessible and no slippage occurs at the contact points. For the second condition, the grasp axis must lie
within the friction cone at each of the two contact faces: |fi; - 4] < cos «, wheretan a = figgatic-



The output of the exact pivots algorithm is the transition graph of exact pivots. a directed graph whose nodes
arethem stable faces F; of the convex hull with an arc between an ordered pair of nodes indicating the existence of a
pivot grasp between them. For each arc, we computethe one-dimensional family of valid grasps affecting thetransition
between the corresponding nodes; each grasp from thisfamily isdescribed by apair of pointson the part. We may wish
to do some processing over this family to pick out agrasp that is optimal under some criterion, such as the minimum
coefficient of friction required. In this case, the optimum friction coefficient may also be returned as output. Theentire
graph can be represented by an m x m transition matrix (see Fig. 6 for an example). For capturing pivots, the arcs
correspond to optimal capturing pivot grasps.

4 Part Configuration and the Grasp Axis

While arigid body in IR® has six degrees of freedom, its mobility is reduced to five degrees of freedom when it is
in contact with a plane. This five DoF Configuration space can be decomposed into: Rotation and trandation in the
support plane IR? x SO(2), and two other components of rotation which can be represented as a point on the unit
sphere $2. Since planar rotations and trandlations are easily performed with a4 DoF arm, we henceforth describe the
part’s configuration as a point on the unit sphere. Asillustrated in figure 2, we affix a coordinate frame to the part with
itsorigin at the part’s center of gravity. Configurationsof the part will be specified by aunit vector in the part frame; the
vector is aligned with the gravity vector, and the part is just touching the work surface; e.g. configuration § indicates
that the face with normal s is coincident with the support surface (unit vectors will be denoted with a hat).

Thepivoting operationtakesthe part fromastarting configuration s to afinal configuration f. For exact pivot grasps,
f is another stableface. To rotate § into f, the axis of rotation (the pivot axis) must be orthogonal to both & and f. Let
a indicate the direction of thisaxis:
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(Notethat a isundefinedwhen § and fare parallel or anti-parallel. |nthese cases, exact pivot graspsare unnecessary
or impossible). When lifted, the part will rotate due to gravity and settle in a configuration where the part’s center of
gravity isdirectly beneath the grasp axis. Thusthe axis must be positioned such that it intersects aray from the center
of gravity in thedirection —f. Let A be the distance from the axis to the center of gravity along this ray.

Thefamily of grasp axes has the parametric equation:

ax(t) = ta — M. o)

We use a,, to specify aparticular grasp axis. Thus, the grasp axis must lie in the half-plane, A, spanned by a and —f.
We call thisthe grasp plane.

We next consider the grasp points on P formed by the intersection of the axiswith the part. Face F; of the part lies
in aplane with unit normal ii; and at distance d; from the origin, and is defined by 1, - g — d; = 0 where g isa point
on the face.

Substituting a, (t) for g and solving for ¢, we obtain the contact point on face i:

di+xp; - f, .
g:(N) = S s 3
n;-a
Note that the intersection is parameterized by A, and over all positive A, the intersection defines aray. (Note: If
n; - a = 0, thereis no solution). For afinite polygonal face (possibly non-convex), the intersection will be a sequence

of collinear segments taken from the ray, and A will range over adigoint set of intervals.

5 Planning Exact Pivot Grasps

Another way to view the set of grasp pointsisto consider theintersection of .4 with the part: . AN P isan open polygon
asillustrated in Fig. 3. Because the part may not be convex, A N P may be composed of multiple non-convex open
polygons. Consequently, a grasp axis (for afixed value of A\) may intersect P at more than two points.
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Figure2: A polyhedral part with 18 vertices, 11 faces(= n), and 27 edges. Wewill usethispart toillustratethe planning
algorithms.



Figure 3: The open polygon formed by .4 N P. Potential grasp axes are parallel to the dotted lines.

Recall that a pivot grasp is valid if both contact points are accessible in the direction of the grasp axis and if the
contactswill not dip under some coefficient of friction.

The outcome of thesetestsisaset A = {\} and apair of mapsu: A — R® and I: A — R whereV\ € A the pair
of grasp points (u(A), (X)) isvalid; u and | are composed of g; restricted to an interval of ).

We now consider an efficient algorithm for computing the entire transition graph.

Thealgorithm:

From P, computeits convex hull . A face of H is stable when the projection of the center of gravity inthe normal
direction onto the face lieswithin the face; the stable faces become the nodes of the transition graph. For every ordered
pair of stable faces of H, whose normalsare given by § and f, determine the set of valid grasp points (if there are any)
that will pivot the part to f asfollows.

1. Determine the direction of the grasp axis a from Eqg. (1) and the grasp plane A from Eq. (2).

2. Computetheintersection of A with P. Thisyieldsacollection of polygonsP in the grasp plane. Because P may
not be convex, A N P may be composed of multiple polygons, each of which may not be convex. The size of
P (the number of edgesand verticesin all polygonsof P) is O(n) since each edge of P can intersect .4 at most
once. Finaly, since P is defined by a B-rep such as a winged-edge structure, the edges of the polygonswill be
ordered and computablein linear time.!

3. Inthedirection f within the grasp plane, computethe upper I/ and lower £ visible envel ope of the polygon(s) P.
Thevisible envelopeis the portion of P visible frominfinitely far away along +a. Each envelopeisafunction
of A, and the edges of the envelope are ordered by increasing A. By definition, points on these envel opes satisfy
the accessihility condition. Each envel opecan be computedin O(n logn) time[16]. However for polyhedrathat
are star-shaped with respect to their center of gravity, such as convex polyhedra, the intersection P consists of a
single simple polygon. In such a case, the envelope can be computed in linear time via a sweep technique.

4. For each edge of U U £ whose corresponding face has surface normal 1i, determineif the face can be grasped
by apoint contact with friction in the direction & accordingto: ||4 - 1i]| < cos . Thiscan be computedin O(n)
time.

5. Mergethetwo sorted envelopes/ and £ intoaset A = UA; whereeach A, isaclosed interval of A. Associated
with each interval isthe pair of functions;(A) and I;(\) which return the grasp points. This merge step can be
performedin linear time.

6. If A # 0, create an arc in the transition graph between § and f and label it with A, u()) and [()).

L Linear time complexity can also be seen by considering atriangulation of each face. A face with e edges can be triangulated into O(e) triangles
in O(e) time [8]. Therefore all faces can be triangulated in O(n) timeinto O(n) triangles. Intersecting each triangle with the half-plane requires
constant time.



Figure4: Intersecting ahalf-planewith aface. First the half-planeisintersected with every edge of thefaceto get a set
of collinear points/subedges. In case of no degeneracies (a), one needs only to do a single point-in-face test to get the
desired result. In case of degeneracies, moretests are required. Specifically, each (a; +a;41)/2 istested for inclusion
intheface. If it existsin the face, then the portion froma; to a ;41 is part of the result.

The complexity of the algorithm is dominated by the construction of the visible envelopes; since there are O(m2)
pairs of stable faces, the complexity of constructing the entire transition graph is O(m?n logn). For star-shaped (wrt
the center of gravity) polyhedra, thisreducesto O(m?n). Noticethat by setting theinput zissatic = 0o, or alternatively,
by skipping Step 4 above, we obtain the family of accessible graspsinstead of valid grasps.

If A # 0, there are various criteria for selecting an optimal grasp from the set of valid grasps. One criterion is
to select the grasp that requires the smallest coefficient of static friction p to successfully grasp it, i.e. the grasp that
minimizesthelargest of the anglesbetween the two surface normalsand the grasp axis. Because the anglesare constant
over each interval A;, thiscriterion alonereturnsan interval of grasps. Within thisinterval, the midpoint of theinterval
can be taken asthe safest grasp; thiswill permit maximal error in the z-direction when positioning the gripper prior to

grasping.

51 Implementation

We implemented the algorithm using Maple V, a commercial symbolic math package, and routinesfrom a C++ geom-
etry package developed at Utrecht University by G-J. Giezeman [13]. Given the model of a polyhedron, our program
computes the transition graph: for each arc, the optimal (requiring least friction) grasp is computed. Now, consider
some specifics of the implementation:

I ntersecting A with the input polyhedron The grasp half-plane A is computed as described in Equations 1 and
2. For each of the n faces of the polyhedron, we must compute the intersection with .A. For face ¢, we compute the
intersection of .A with every edge. If theintersection is not empty, it can be asingle point on the edge or a subset of the
edge.

These subedges (or points) taken over al the edges of face i are collinear and are sorted in left-to-right order by
taking the projection of the center of gravity onto the plane containing face s and sorting according to the signed distance
from p.

We next extract the desired intersection: the portion of .4 contained within face 1. Suppose we know whether p
belongsin facei. Then, in the absence of degeneracies, one could simply do an alternation of ins and outs as shownin
Fig. 4(a); the portion between an “in” and the next “out” is part of the result. However, this clearly wouldn’'t work in
case of Fig. 4(b). Thereforewhat we do isthe following. We label the critical pointsay, as, ... as shown. We then test
point-in-face for each midpoint (a; + a;+1)/2 inface . If the midpoint liesin the face, we include the portion from
a; t0 a;4+1 intheresult. While this requires more point-in-face tests, it handles degeneracies properly.



Figure 5: Computing the right envelope of asimple polygon. The figure considers computing the right envel ope of the
portion of the polygon from its right-most point r to its bottom-most point b. The edgesare considered inthe order 1,2,
to 7. Depending on the current state of the envelope, anew edgeis either ignored (Edge 4), is simply appended (Edges
1,2,3), apart of it is appended (Edge 5), or it replaces a portion of the current envelope and has to be wholly included
in the new envelope (Edges 6,7).

Computing envelopes The final step in the implementation is computing the left and right envelopes of the set of
edges obtained in the previous step (intersecting .A with the polyhedron). The intersection will be a set of polygons
but the set of edges are not ordered yet. So wefirst order the edges into chains by doubling each edge and giving them
opposite directions. We then sort these directed edges by coordinates of starting point. This enables us to compute
the neighbor of each edge since neighbors share one end-point and thus we can organize the edges in polygon order.
(We assume, as stated before, a simple polyhedron which implies that the polygons of intersection will be simple: no
two edges cross each other except at end points and no three edges share any point in common). Next we compute
the envelopesfor each polygon. Thisis done viaasimple sweep technique. Briefly, to compute the envelope from the
right we begin at the right-most point » and conduct two traces. one ends at the bottom-most point b and the other at
the top-most point t. Note that these three extremal points surely belong to the envelope. Consider the trace from r to
b. We consider the sequence of edges one by one. Let bx denote the the bottom-most point considered after looking at
some [ edgesin the sequence. Thel + 1th edge either (i) lies fully to the left of the current right envelope (ii) fully to
theright or (iii) a connected subset of it liesto the right and another connected subset liesto the left. These three cases
can be distinguished by testing only the end-pointsof thel + 1th edge. See Fig. 5. Thereare 7 edgesfrom r to b. Case
(i) is easy to handle: simply ignore the edge and carry on (Edge 4). In case (ii), we need to either smply append the
edge (Edges 1,2,3) or we need to erase a portion of the current envel opeand replaceit with the + 1th edge (edge 6 and
edge 7). To handle case (iii), we need to ook at b and the portion of thel + 1th edge that “peeks’ from underneath bx
isthe required portion to be appended to the current envelope (Edge 5).

After computing the right envelope for all the polygons, these are merged to compute the correct collective enve-
lope. Samefor theleft envelope. Theleft and right envelopes are swept across and the midpoint of the subset of grasp
point pairs that require the minimum friction angle is outpuit.

5.2 Results

For the part shown in Fig. 2 modeled with 18 vertices and 11 faces (= n), the convex hull has 6 stable faces (= m).
The transition graph, with 30 edges (m(m — 1)) along with the most dip-resistant exact grasp for each edge, was
computed in 34 seconds on a Silicon Graphics workstation (R4400 processor running at 150 MHz, 96.5 SPECfp92,
90.4 SPECint92).

Thematrix of transitionsisillustrated in Fig. 6. Theleft columnindicatesthesix initial poses, and thetop row shows



the six possiblefinal stable poses. The rest of the matrix displaysthe pivot grasps: cell (4, j) hasthe part drawninitss
stabl e configuration and specifiesthe pivot grasps that movesthe part to the jth asfollows. Thickened lines on the part
indicate the left and right envelopes (u(A), v(A)), i.e. the set of accessible pairs of points affecting the transition. With
infinitefriction, each pair of pointsisvalid; otherwise, only asubset of themis. A pair of pointsrequiring the minimum
friction is marked with disksin each cell. (See the following three figures for more detail.) The value of this minimal
value of ustatic 1S at in the upper right hand corner. Notice that the cellsthat involve transitions between parallel faces
of contact, (4,6) and (6,4), are empty: no single-step pivot grasp exists for these transitions.

We zoom into afew cellsof thematrix to clarify detail. Fig. 7 showscell (2, 6): the envelopesform single segments
on apair of vertical parallel faces, and the optimal grasp consists of opposing points on these faces, and therefore any
infinitesimally small friction is sufficient to affect the transition. In fact, notice from Fig. 6 that all transitions from
Configuration 2 have this property. (Thisis aso true for al transitions to Configuration 2, and also to Configuration 5
which isintuitively the “most stable” configuration). Fig. 8 shows Cell (1,4) which issimilar in that the envelopesare
single opposing segmentsfrom parallel faces, in fact the same facesasin the previousfigure; the computed grasp points
are midpoints of these segments. However, the faces are no longer vertical and therefore the minimum coefficient of
friction required is away from zero: 0.875. Finally, Cell (4, 3) is shown expanded in Fig. 9. This cell is an example
of a case where the envelopes consist of more than one segment. Here the optimal pair of grasp points come from
orthogonal faces, and the lowest possible value that pigi.45. should beis 1.187.

6 Planning Capturing Pivot Grasps

When apart is placed in contact with the supporting planein aconfiguration other than astable one, it will tumble until
it settles to one of the m stable poses. Following ideas presented by Brost [5], the space of initial contact configura-
tions S2 can be partitioned into a set of m digoint capture regions, each of which contains a stable pose. From any
configuration in aregion C(f), the part will converge to the corresponding stable pose f. Assuming only dissipative
dynamics, the part’s potential energy, written as a function of the configuration u: S? — IR, can be used to determine
the capture regions [21]. Since u is non-smooth, stratified Morse theory can be applied to determine and classify the
critical points of «; a subset of the equipotential contours through the * saddle-like” points define the boundary of the
captureregions[20].

Consider for example, the part shown in Fig. 2; contact only occurs along its convex hull shownin Fig. 10a. First,
the sphere of configurationsis stratified according to the generalized normal of the hull. The supporting plane only
contacts a face for a single configuration. It contacts an edge along a curve of configurations given by the convex
combination of the normals of the two incident faces, and it contacts a vertex along aregion of sphere. Contact along
an edge is depicted by the thicker arcsin Fig. 10b,c. It is shown in [20] that the boundary OC(f) of the capture region
C(f) for configuration f is composed of arcs of circles on the sphere. These arcs arise as configurations of constant
potential energy « when a particular vertex v isin contact with the supporting plane. Each circular arc can be written
parametricaly in t by:

4(t) = cos(t)i + sin(t)j + k 4

whereli| = |j| = /1 —u?/[v—c|2, k= ﬁ(v —¢), andi, j and k are orthogonal. The limits of theinterval of ¢
are determined by the configurationswhere rolling about the vertex leads to contact with an edge. In Figs. 10b,c, the
thin curves delineate the capture regions.

Here, we extend the algorithm for exact pivoting grasps and consider the set of grasps where the part pivotsto a
configuration within a capture region. The set of feasible grasps then expands from being one dimensional in the case
of exact graspsto being three dimensional. The extended algorithm outlined below has not been fully implemented.

6.1 Valid grasps

Recall that apivot graspisvalid if both contact pointsare accessiblein the direction of thegrasp axisand if the contacts
will not slip under some coefficient of friction. For capturing pivot grasps, the part’s configuration after pivot, g, can
point anywhere within the capture region C (f ) of the stable configuration f. In Section 5, it was shown that the set of
valid grasp axes (if non-empty) defines a one dimensiona set which can be parameterized by A. Here, we will see that
the set of valid graspsis generically three dimensional.
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Figure 6: The matrix of transitions for the part with six stable configurations. Cell (i, j) indicates the family of ac-
cessible pivot grasps that will move configuration ¢ to configuration j; the frictionally optimal grasp from among this
family is shown as a pair of disks. Numbersin the upper right-hand-corner of each cell indicate the minimal required
coefficient of friction. Note that no single pivot grasp exists for cell (4,6) or (6,4); this transition requires a sequence
of two grasps, regrasping after, for example placing the part in configuration 5.
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Figure 7: Transition of Cell (2,6).

Figure 8: Transition of Cell (1-4).
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Figure 9: Transition of Cell (4,3).

0 OO

Figure 10: Captureregions: a. The convex hull for the polyhedral part in Fig. 2; b,c. The capture regions.
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Asdiscussed in Section 4 for apart resting on aninitial facein configuration §, agrasp axis can be determined from
aunit vector q (the configuration after pivoting) and apositive scalar A. Inthe previous section, the configuration after
pivoting was the final desired configurationor g = f. For agiven initial configuration § and a pair of faces F; and F;,
the set of valid grasp axes can be given by:

Gij ={(@):q € 5% ) e Rt}
subject to the following conditions.
. @ must bein the captureregionof f. i.e. g e C(f).
gi(da )‘) € -Fiv g](da)‘) € Fj
g:(4,A) and g;(q, A) are accessiblein the direction a(q).
|a(d) - ;| < cosa and |a(q) - f;| < cosa
sign(a(q) - nn;) = —sign(a(q) - ;)

ok~ w DN PR

where g, (&, A) is given by equation (3) and 4(¢) is given by equation (1) with ¢ replacing f.

In general each of these conditions is independent and since none of them defines an equality constraint, the valid
set G; ; will generically be empty or three dimensional. The set of all valid grasp axesis given by: G = UG, ;. Note
that Conditions 1 and 4 do not involve A whereas Conditions 2 and 3 involve both \ and g.

To smplify the presentation in the rest of this paper, we will only consider the polyhedron P to be convex. This
assumption has the following immediate implications: Every grasp axis satisfying Condition 2 will be accessible (i.e.
it satisfies Condition 3) since every point on every faceis accessible when P is convex. Additionally, since there are
at most 2 isolated intersections between a line and a convex polyhedron, specifying a grasp axis uniquely determines
the two grasp points. Unlessthe grasp axisliesin aface where a - i = 0, Condition 5 will be satisfied for any grasp
satisfying Condition 2 since the axis intersects P in only two points.

Note that constraints 1, 2 and 4 can be expressed as polynomial inequalities, and therefore the set of valid graspsis
a semi-algebraic set. There are well established techniques, e.g. Collins's cylindrical algebraic decomposition) [2] or
Canny’s roadmap [6], for characterizing a semi-algebraic set including determining if it is empty. Thus, a naive algo-
rithm for determining the complete set of valid grasps which will pivot P into the captureregion of f isto characterize
G,,; for al distinct pairs of facess and j.

6.2 Optimal grasp selection

In the previous section, we observed that the set of valid grasps G definesathree dimensional set. Explicitly computing
this set israther expensive, and so instead we will select a subset of G by posing some notion of an optimal grasp and
then optimizing the criteria over the set G. There are anumber of valid criteria (See [9]), and here we will consider a
rather simple one; the same basic ideas can be applied to others. For adistinct pair of faces F; and F}, the criterion is:

0;,;(a,A) = min(|a(q) - A}, [a(q) - H;) ©G)

The optimal grasp axis (q,A) € G, ; is onewhich maximizes O, ;, and this can be applied to al pairs of distinct
faces. What does this criterion say? The dot products are related to the angle between the grasp axis and the face, and
the minimum selects the larger angle. When the angle is small, the coefficient of friction p does not have to be large
for the contact to be stable. Thus, the optimal grasp also provides an upper bound on the coefficient of friction; that is,
w must be less than the optimal O, ;.

Notethat for agiven pair of faces F; and F;, thecriterion (5) doesnot involvethe grasp height A. Thus, when pivot-
ing directly onto f asin Section 5, all valid graspswithin aninterval A; (i.e. for aspecific pair of faces) are equivalent.
Furthermore, Condition 4 given above can be easily checked by selecting the optimal grasp which satisfies Conditions
1 and 2 and then checking Condition 4. As discussed above, we have assumed away Condition 3 by only considering
convex polyhedra.

Notethat G is neither open nor closed since we have the constraint A > 0. For the optimization to be well defined,
we consider optimizing O, ; over the closure of G which will still be denoted G. The maximum of O, (g, A) over the
closure of G may either lie in the interior or on the boundary 9G. Since O;,; is multimodal, a two step procedureis
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required: (1) thelocal maximaof O, (g, A) over al S? x R are computed and then only those contained within G are
retained. (1) O, ; isoptimized with (g, A) restricted to dG. The maximum value of O, ; from these two steps is the
global max.

Note that when maximizing O, ; over 9G, part of the boundary of G is given by grasps along the edges and vertices
of P. Inthis paper, we assume point fingertip contact along aface. When considering agrasp along an edge or vertex,
we assume that contact occurs on a particular face at the position of the edge or vertex. Because of the inability to
precisely place agrasp point, one may want to account for the uncertainty in grasp location in practice. One approach
istoonly consider graspsthat are further than some e from any edge. Effectively, this shrinksthefacesyielding smaller
convex polygons.

Let usfirst consider step (1). Note that Eq. (5) is non-smooth, and it is maximized when either:

i. |a-n,|isalocal maximumand |a - fi;| > |a - |
ii. |a-f,|isalocd maximumand |a - fi;| > |a- Q|
iii. |a-f;]=1a-na,|
Thesethree conditionsare subject to thetwo constraints: |4| = 1 anda-§ = 0. Conditions(i) and (ii) are symmetric,

and Lagrange multipliers can be used to solve for the optimal grasp axis location subject to these two constraints: For

case (i) we have:
a=__ 1 | [(R; - 8)8 — 1y (6)

|(B; - 8)8 — A

provided |a - fi;| > |a - 1n;|. Geometrically, this correspondsto projecting 1, onto the support plane.

Because of the fifth condition for a grasp to be valid, we can write Condition (iii) asa - fi; = —a - ;. Thegrasp
axis direction satisfying this condition and the two constraintsis:
n 1 PPN
a— X (ni + n]‘) (7)

[§ x (f; + 1j)]

Geometrically, this condition correspondsto the projection of the bisector of i; and in; onto the support plane.

The conditions given by both (6) and (7) only specify the direction of grasp axis a, and not the actual axis. From
Section 4, the set of configurations ¢ after pivotingisorthogonal to a or -4 = 0. Thisdefinesagreat circleon S2. The
optimization criteria does not constrain A (except by definition it is positive). Thus, the set of grasps which maximize
0,,; istwo dimensional. The intersection of the great circle with the capture region can be easily computed, and since
theC(f) isnot convex, thisyieldsaset of arcs. Thisensuresthat Condition (1) is satisfied. The set of optimal graspsis
further pruned by Condition (2) that the grasp points must lie on the two faces. Theintersection of the grasp axiswith
afacefor afixed q will lie on aline parameterized by A. Since the faceis convex by assumption, the intersection will
actually only lie on a single line segment, and the endpoints of this segment can be found from the edges of the face.
Consequently, the optimal grasp can be specified by apair of functions \,,:, (@), Amaz (@) Where q isrestricted to the
computed arcs of the great circle.

The two dimensional set described above specifies the set of grasps that optimize the grasp criterion given in (5)
for grasps confined to the interior of G. We now consider the possible optimal grasps on the boundary 9G of G. G is
itself non-smooth, and it can be stratified into two dimensional surfaces, one dimensional curves, and zero dimensional
vertices. Therewill be ten different casesto consider.

6.2.1 Optimizing on surfaces of 9G

The surfaces of 9G arise when either:

1. qisrestricted to the boundary of the captureregionand A isfree
2. Oneof the grasp pointsis restricted to an edge of afaceand q liesin the interior of the capture region.

Inthefirst case, q lieson an arc of acircle asgivenin (4), and from (1), the unnormalized grasp axis direction can be
written asa(t) = § x §(t). After normalizing a(t), the grasps satisfying (i) (or similarly case (ii)) can be found by
differentiating 4(t) - fi; with respect to ¢, and finding the values of ¢ where thisvanishes. Case (iii) leadsto apolynomial
equation in ¢ which can be readily solved. Once the optimal ¢ is found, the configuration g after pivoting is given by
(4). X isrestricted to an interval which is easily computed by intersecting the grasp plane with faces F; and Fj.
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The second type of surface of 8G, isagrasp point g; on an edge of face F; formed by the intersection with face F,
whoseimplicit equationis iy, - g — dj, = 0. Substituting g;(\) from Eq. (3) and solving for X yields:
d;(y, - &) — di(B; - &)
(B - @)(0; - &) — (A, - 4)(Dy - &)

Aa) = ()
Notethat q is not restricted, and so the optimal grasp axisdirection 4 can be computed according to the two conditions
givenin (6) and (7) as discussed in case 1. The set of final configurations after pivoting form arcs of a great circle

~

{§:4-a=0,q € C(f)}, and (8) provides the means to compute A(q).

6.2.2 Optimizing on curvesof 3G

The one dimensional strata of 9G correspond to four cases:

3. g liesat avertex of the arc of the capture region, and X isfree.
4. One of the grasp pointsisavertex of aface, and g liesin the interior of C(f).

5. Onegrasp point is along an edge of face F; while the other grasp point is along an edge of face F;, and q isin
theinterior of C(f).

6. q isrestricted to an arc of c’)C(f), and one grasp point lies on an edge of aface.

Case 3istrivial since q isgiven and so the grasp axis direction can be directly computed from Equation (1). Note that
this case is also equivalent to the conditions of the exact planning algorithm of Section 5, and so this can be handled
more efficiently.

Consider case 4 where the grasp axis passes through a vertex v of facei. From (3), we have that the following
vector constraint
d; — A\ - qé

+ A4

n;-a

from which we can derive two independent constraints by considering the component of v in the a and g directions
and a bit of manipulation:
A=v-q
{ N ; (©)

(v-a)(n;-a)+(v-q)(ni-q) —di =0

Note that the second constraint defines a curve implicitly in g € S? independent of A, and can therefore be used to
computea. Thefirst constraint can then be used to compute )\ asafunction of q. Tofind theoptimal grasp axisdirection
on this 1D stratum of 9G, we have to consider condition (i)—(iii) discussed above. For cases (i) and (ii), Lagrange
multipliers can be used to find the extrema of 11 - & subject to the second constraint in (9). Case (iii) is specified by a
system of three polynomial equationsin §: the second of Equations (9), § - § x (i; + 1) = 0 (from Eq. (7)), and
q - q = 1; thissystem can be readily solved by numerous techniques such as homotopy continuation [25].

In thefifth case, the two grasp pointslie on edges formed by the intersection of F; and F}, (asin case 2 above) and
by the intersection of F; and F;. Since A\(gq) must be the same for both grasp points, Eq. (8) can be rewritten for both

edges and equated yielding:

(d (i - &) = di (- ) (- Q)(B, - &) — (2 - Q) -4)) = 10
(d;j(f; - &) — di(f; - 8))((Ag - @)(H; - &) — (A, - a)(hy - &

Thisis an eighth degree polynomial equation in the elements of g, and defines a curve of configurations on the
sphere. The optimal g satisfying condition (i) and (ii) can be found by Lagrange multipliers subject to the above con-
straint and |q| = 1. Thisyieldsasystem of polynomial equationswhich isagain readily solved using homotopy contin-
uation. The optimal § according to condition (iii) is clearly characterized by a system of polynomial equations. Once
the optimal q is computed, it must be checked that g € C(f), and then A is found from (8).

Inthe sixth case g isrestricted to the boundary of the captureregion, and since O; ; isindependent of A, the optimal
grasp axis direction and final configuration after pivoting g can be computed asin case 1. (8) isthen used to compute
A
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6.2.3 The Verticesof 9G

For apair of faces F;, F}, the vertices of the 9G can be computed as points (g, A) in the grasp space. Once the coordi-
nates of the vertices are computed, O; ; can be directly evaluated from (5). The vertices of 9G occur in the following
four cases:

7. qisavertex of an arc of 8C(f), and one of the grasp pointsis at an edge;
8. Onegrasp point isavertex of F;, and the other isalong an edge of F;
9. Onegrasp point isavertex of F;, and § isalong an arc of 9C(f);

10. Each grasp point lies on an edge, and g lies on an arc of 8C(f).

Case 7 isvery easy to handle. The optimality criteriacan be easily determined asin case 1, and the grasp point g; along
the edge is computed from (8).

Grasping at a vertex of F; is characterized by Equations (9), and from the second equation, we have an implicit
constraint on q. Substituting the parameterized equation for an arc of 9C(f) given by (4) leadsto asingle equationin
¢ which can be readily solved. If q(t) € C(f), then A can be easily determined from the first of Equations (9).

Inthe ninth case, one of the grasp pointsisvertex v of face F; and the other contact point ison an edge of F; formed
with the intersection with F}.. The grasp axis can be written as v + ta. Writing that the grasp axis must intersect the
edge and that it is orthogonal to § leads to the following system of linear equationsin a = ta:

ﬁj-a =dj—ﬁj‘v
ﬁk-a :dk—ﬁk-v
S-a =0

Once a is computed, Equations (9) along with |g| = 1 and g - a = 0 can be used to compute g and ).

Thetenth caseis like the fifth case with the restriction that q lies on a boundary arc of the capture region. Substi-
tuting q(¢) from (4) into Equation (10) leads to asingle equation in ¢ which is easily solved. If ¢ iswithin the correct
interval, q and A are then readily determined from (4) and (8).

7 Discussion

This paper describes how to plan a particular class of grasps that have not previously been considered. Pivot grasps
allow arobot with only 4 active DoF to move a polyhedral part through 6 DoF. The “gap” is closed by introducing a
pivoting axis between the parallel jaws of asimple gripper and exploiting theforce of gravity to rotate partsasthey are
lifted off a support surface.

We have presented an O(m?2n logn) algorithm that builds the transition graph of pivot grasps. The algorithm is
completein the sense that whenever avalid pivot grasp exists, it will find one.

Perhaps surprisingly, the problem of planning exact pivotsisin fact sol ution-compl ete (borrowing terminology from
[14]) i.e. avalid pivot grasp always exists if the part’s center of gravity liesinside the part and grasp points have infi-
nite friction. The interior center of gravity condition ensures that accessible grasps that effect any transition exist; the
envelopesu()), [(A) cannot beempty. Therefore, with infinitefriction, the part can always be picked up and the transi-
tion completed. Other conditionscan also insure solution-compl eteness, for example partsthat are cuboids (rectangular
parallelopipeds) with any non-zero friction. The difference between these two examplesis that with infinite friction,
we can always affect the transition in asingle pivot grasp while for cuboids with non-zero friction, a sequence of two
grasps may be required, for instance, to invert the part onto aface with an anti-parallel normal. (Remark: Performing
thisinversioninasingle grasp ispossibleif we allow the manipulator to “ shake” since this configurationis meta-stable:
i.e. by accelerating the manipulator in almost any direction after pick-up.)

For convex polyhedra, and in general, for polyhedrathat are star-shaped with respect to the center of gravity, the
complexity of computing the transition graph reducesto O(m?2n). An open question iswhether or not this complexity
can be reduced when we only need to compute paths to asingle desired final face from al other stable faces (as might
be the case for parts feeding).

We have tested some of these pivot grasps in the lab using an Adept robot arm (see [7]). We plan to extend the
planning algorithmsin several directions. Firstly, We would like to consider “active” pivoting, where the pivot axisis
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actuated by a small motor and hence pivoting does not rely on gravity. This would allow us to remove the constraint
that a intersects —f.

Secondly, in addition to implementing the computation of optimal capturing pivot grasps, wewould like to broaden
the definition of capture regions. For example rather than requiring that the part settles to auniquefinal configuration,
we might consider requiring that the part settle onto one of a set of stable configurations. For example, consider a pair
of stable faces defined by two local minima separated by a saddle point. Thereis alarger region including these two
capture regions which is guaranteed to converge to one of these two stable faces, but we do not know to which one.
The pair of stable faces can be treated as a super node. Sensing can be used to determine which of the two stable faces
is achieved after pivoting. Using graspsthat pivot into these “ super-capture regions’ can improve the connectivity of
the transition graph.

One issue we have neglected is possible collisions with other parts during execution of a pivot grasp. Collisions
could be easily predicted by the vision system. One way to avoid collisions would be to maintain alternative pivot
grasps for each desired transition and then choose one that would avoid collisions, if possible, during execution. Note
that theflexible feeding system envisioned by Carlisle et al would recircul ate partsthat cannot be reoriented dueto such
interference.

To reduce run-time, we are planning to re-implement the exact pivot algorithm in a compiled language. We will
integrate thisinto alarger system that will aid in the rapid setup of flexible part feeders. This system will also contain
routinesto predict feeder throughput by estimating the statistical distribution of stable posesfor agiven part. Asstated
at the outset, our long-range goal is to incorporate this analysisinto a solid modelling package: as the designer creates
anew part, he or she can immediately test the “feedability” of this part, perhaps modifying the shape accordingly.

Acknowledgments. We thank Brian Carlisle and John Craig for helpful feedback on this work, Otfried Schwarzkopf
for discussions on computing envel opes, and Geert-Jan Giezeman for help with the implementation.
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