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Abstract -- Industrial parts can be fed (oriented) 
using a sequence of fixed horizontal pins to topple 
the parts as they move past on a conveyor belt.  
We give an algorithm for designing a sequence of 
such pins for a given part. Given the n-sided con-
vex polygonal projection of a part, its center of 
mass and frictional coefficients, our O(n2) algo-
rithm computes the toppling graph, a new data 
structure that explicitly represents the mechanics 
of toppling, rolling, and jamming. We verify the 
toppling graph analysis with experiments. Our 
O(n3n) design algorithm uses the toppling graph 
to design a sequence of pin locations that will 
cause the part to emerge in a unique orientation 
or to determine that no such sequence exists.   
 
Index Terms --  Manufacturing, Assembly, Part 
Feeding, Motion Planning. 
 

I. INTRODUCTION 

To facilitate rapid setup and changeover of industrial 
assembly lines, CAD/CAM software can analyze 
part geometry and mechanics to assist in the design 
of components such as grippers, fixtures, and part 
feeders.  In this paper we focus on a class of part 
feeders that uses a sequence of horizontal pins to 
topple a stream of identical parts as they move past 
on a conveyor belt. Pin heights must be designed for 
a given part and set of frictional coefficients.  Man-
ual analysis is complex and tedious; in this paper we 
describe an automated design algorithm based on the 
toppling graph, a new data structure that compactly 
represents the mechanics of toppling, rolling, and 
jamming.  We give an algorithm for computing this 
graph, and then use the graph in a second algorithm 
that designs a sequence of pins or determines that no 
such sequence exists.  

The input to our algorithm is the n-sided convex 
polygonal projection of the part, its center of mass, 
and the coefficients of frictional between the part 
and the conveyor belt and the part and the pins. 
Gravity forces each part to arrive at the first pin in 
one of n stable orientations.  For each stable orienta-
tion, we find a range of critical pin heights that will 
cause the part to rotate into the next stable orienta-
tion without jamming.  We then design an arrange-

ment of pins that will work for all stable part 
orientations. 

We develop a set of functions to represent the 
mechanics of toppling. Lynch1,2 was the first to for-
malize mechanical conditions for toppling and to 
study pin sequences for part feeding.  Here, we ex-
tend Lynch’s analysis and develop a geometric de-
sign algorithm. 

We define geometric functions that map from 
part orientation to distance: S1→ℜℜℜℜ+.  These func-
tions describe the height of vertices and critical 
jamming conditions as the part rotates.  These func-
tions are defined on planar slices of configuration 
space (C-space) and are generalizations of the radius 
and width functions5.  The toppling graph is a new 
data structure that combines these functions to facili-
tate identification of critical pin heights.  
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Figure 1. This sequence of 3 pins (coming out of figure) will 
orient the polygonal part as it moves from left to right: all initial 
part orientations are rotated to the same final orientation.  
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II. RELATED WORK 
Erdmann and Mason3 were the first to develop sen-
sorless manipulation planning algorithms. They ana-
lyze the problem of orienting a given part by tilting a 
planar tray, causing the part to make contact with 
tray walls in a specific sequence of directions.  They 
identify critical tilting directions and develop a 
complete algorithm to find tilt sequences by search-
ing the finite tree of all sequences. They showed that 
sensing is not required to guarantee a unique final 
orientation, hence the term: sensorless manipulation.  
Brost4 developed analytical methods for describing 
the interaction between a pair of polygonal objects 
and gave algorithms for constructing forbidden re-
gions (obstacles) in the configuration-space (C-
space). Goldberg5 analyzed sequences of parallel-
jaw grasping operations that will orient polygonal 
parts without sensors.  He proved that such a se-
quence exists for any polygonal part and gave an 
O(n2) algorithm for finding optimal sequences. Abell 
and Erdmann6 studied how a planar polygon can be 
rotated in a gravitational field while stably supported 
by two frictionless contacts. Zumel and Erdmann7,8 

analyzed nonprehensile manipulation using two 
palms jointed at a central hinge and  developed sen-
sorless sequences to orient parts. 

Lozano-Perez9 treated the design of part feeding 
devices as dual to motion planning.  He   described 
feeders using C-space. In this paper, we develop a 
C-space formulation for the mechanics of pins. Na-
tarajan10 gave a computational abstraction for part-
feeding devices. Given k transfer functions, f1, f2, …, 
fk, on a finite set S, Natarajan showed that f0, if it 
exists, can be found in time O(kn4) such that |f0(S)| = 
|{f0(v) |v∈S}| = 1, where f0 is a composite of the fi’s 
and n is the size of S. Caine11 represented part inter-
actions as motion constraints in C-space, and devel-
oped a set of computational tools for computer aided 
design of vibratory bowl feeder tracks. Christiansen 
et al.12 used genetic algorithms to generate vibratory 
feeder tracks. Berkowitz and Canny13 used dynamic 
simulation to test candidate feeder tracks. 

 Many part feeding devices have been studied. 
Peshkin and Sanderson14 analyzed the problem of 
orienting parts on a conveyor belt with a sequence of 
fixed planar fences.  They discretized the range of 
fence angles to search for sequences of fences. 
Wiegley et al.15 added curved tips to the fences to 
insure that the transfer functions are deterministic 
and gave a complete algorithm to compute the short-
est sequence of fences.  Berretty et al.16 gave a poly-
nomial-time algorithm to find such a sequence for 
any polygonal part. Gudmundsson and Goldberg17 
derived optimal conveyor belt velocities using a 
queuing model. Akella et al.18 showed that a one-

joint robot can orient parts by sweeping a planar 
fence over the conveyor belt.  

Bicchi and Sorrentino19 analyzed the mechanics 
of 3D rolling with a pair of parallel jaws. Berretty et 
al.20 studied vibratory feeder traps and gave algo-
rithms to design traps based on part geometry. Blind 
et al.21 designed a “Pachinko”-like device to orient 
polygonal parts in the vertical plane using a grid of 
retractable pins that are programmed to bring the 
part to a desired orientation as it falls.      

Our work is also motivated by recent research in 
toppling manipulation. Zhang and Gupta22 analyzed 
how parts are reoriented as they fall down a series of 
steps.   Yu et al.23 showed how to estimate the mass 
properties of parts by detecting toppling with a force 
sensor. Lynch1,2 derived a set of graphical toppling 
conditions based on part geometry, center of mass, 
and coefficients of friction at the support and top-
pling contacts.    

 

III. PROBLEM DEFINITION 
We consider a stream of well-separated identical 
parts traveling horizontally along a conveyor belt.  
As parts come into contact with horizontal cylindri-
cal pins, parts are caused to rotate in the plane or-
thogonal to the pins until they fall into a new stable 
orientation on the conveyor belt.   We assume that 
pins are fixed and rigid, inertial forces are negligi-
ble, and that part geometry and center of mass are 
known exactly. 

The input of our algorithm is a list of vertices 
defining an n-sided convex polygon, its center of 
mass (COM), and coefficients of friction, µt and µp:  
between the part and belt and between the part and 
pin respectively.   The output of our algorithm is a 
(possibly empty) range of critical pin heights for the 
part at each of its stable orientations. A pin at a criti-
cal pin height is guaranteed to topple the part from 
one stable orientation to the next without jamming. 
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Figure 2. Notation. 
 

Figure 2 illustrates our notation.  The part 
moves from left to right on the conveyor belt. The 
conveyor friction cone half-angle is αt = tan-1µt and 
the pin friction cone half-angle is αp = tan-1µp. The 
pivot point is the vertex about which the part rotates, 
taken to be at (0,0). The COM is a distance ρ from 
the origin and an angle η from the +X axis at an 
initial stable orientation. We denote the vector at the 
left edge of the pin’s friction cone as fl and the right 
edge as fr. 

Starting from the pivot, we consider each edge 
of the part in counter-clockwise order, namely e1, e2, 
…, en. The edge ei, with vertices vi at (xi, zi) and vi+1 
at (xi+1, zi+1), is in direction ψi from the +X axis. The 
analysis given below is repeated for each stable ori-
entation of the part. 

 

IV. TOPPLING ANALYSIS 
We divide toppling into a rolling phase and a set-
tling phase as shown in Figure 3. Let θ denote the 
orientation of the part from the +X axis. Rolling 
involves the rotation of the part from the initial ori-
entation (θ  = θ0) to the unstable equilibrium orienta-
tion (θ = θt) where the COM is directly above the 
pivot. During Settling, the part rotates from the un-
stable equilibrium orientation to the next stable ori-
entation (θ = θ1).  
 

 
 

Figure 3. Two phases of toppling: rolling and settling. 
 

There are four types of functions that describe 
critical heights as the part rotates.  The radius func-
tion, R(θ), gives the height of the COM.  The vertex 
functions, Vi(θ), give the height of vertex i  and ter-
minate when the vertex is no longer visible from +X 
axis.  The rolling functions, Hi(θ),  give minimal 
heights for pin contacts to initiate toppling and are 
determined for each edge at θ0 <θ < θt  The jam-
ming functions, Ji(θ), give the critical height below 
which jamming may occur and are determined for 
each edge at θt <θ < θ1. All of these functions are 
combined to form the toppling graph. 

A. Radius Function 
  For a polygonal part, the radius function is 

piecewise sinusoidal5. Each local minimum of corre-
sponds to a stable orientation of the part.  

B.  Vertex Functions 
The vertex function, Vi(θ) = xi sinθ  + zi cosθ, 

describes the height of vertex i as the part rotates.  
Like the radius function, it is piecewise sinusoidal. 
The vertex function is truncated after its global 
maximum at the point where it intersects another 
vertex function. This is the point at which the vertex 
is no longer visible from the +X axis and therefore 
can no longer be contacted by a pin. Figure 4 illus-
trates the vertex functions and the radius function for 
the part in Figure 2.  Note that a pin at a height h 
contacts edge ei if Vi(θ) < h < Vi+1(θ).  
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Figure 4. Radius function, R(θ), and vertex functions, Vi(θ). 

C. Rolling Functions 
During the rolling phase, the pin causes the part 

to rotate about its contact point with the conveyor 
belt surface: the pivot point. Friction between the 
part and the conveyor belt must prevent the pivot 
point from slipping on the belt; but friction between 
the part and the pin must allow the part to slip rela-
tive to the pin. Also, the system of forces on the part, 
including: the contact force at the conveyor, the con-
tact force at the pin, and the part’s weight, must gen-
erate a positive (counterclockwise) moment on the 
part about the pivot point. 

The rolling function, Hi(θ), is the minimum 
height that the toppling contact in edge ei must be in 
order to roll the part during the rolling process, 
where θ =θ0 ~θt. The function is determined as a 
function of θ using an analysis based on Lynch’s  
rolling conditions1. Those conditions extend a 
graphical method from Mason24. 

We begin by constructing a region as shown in 
Figure 5 with vertices P1 at (ρ cos(η+θ), ρ 
cos(η+θ)/µt), P2 at (0,0), and P3 at (ρ cos(η+θ), -ρ 
cos(η+θ)/µt). For a fixed pin to cause rolling, the 
contact force between the pin and the part must 
make positive moment about every point in the 
P1P2P3 triangle.   

By examining the kinematics of the part and the 
pin during rotation, we can determine which direc-
tion the pin slips relative to the part. This allows us 
to limit our consideration to one edge of the friction 
cone, depending on the direction of slip. In general, 
the rolling conditions will depend on whether the 
contact has a positive or negative X coordinate, i.e. 
whether it is right or left of the Z-axis. 

Let wi be the distance along edge ei as shown in 
Figure 5. Any point on ei can be expressed in terms 
of wi as (xi + wi cosψi, yi + wi sinψi). Let wi

* denote 
the critical value where the contact is on the Z-axis. 
Thus: 

 

xi cosθ  - zi sinθ  + wi
*
 cos(ψi+ θ) = 0, 

and 
wi

* = (- xi cosθ  + zi sinθ )/ cos(ψi+ θ),          (1) 
 

 the height of the point at wi
*  is: 

 
Hi

*(θ) = xi sinθ  + zi cosθ  + wi
*
 sin(ψi+θ).    (2) 

 
The contact is left of the Z-axis if wi

  > wi
*; right 

of the Z-axis if wi
  > wi

*. Let Hil(θ) denote H(θ) when 
the contact is left of the Z-axis, and Hir(θ) denote 
H(θ) when the contact is right of the Z-axis. 
 

αt
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Figure 5. Conditions for the rolling phase.  
 
1) Contact to the right of the Z-axis 

For the case where wi
 ≤  wi

*, as the part rotates, 
the contact between the part and the pin moves such 
that wi is decreasing. Therefore, the contact force 
must be at the left edge of the pin friction cone. The 
rolling height for this case is determined by project-
ing lines from P1 and P2 at the angle of fl until they 
intersect the edge of the part. Of these two intersec-
tions, the one with the maximum height indicates the 
rolling height, Hil(θ), if it is less than Hi

*(θ). 
Let 1wil(θ) denote the pin contact on ei where fl 

passes exactly through point P1. We can show 
through geometric construction that: 
 

1wil(θ) = (2µt zi cos βil – ρ cos(βil -η) – ρ cosνil -
2µt xi sinβil + µt ρ sin(βil -η)  + µt ρ sinνil ) / (2µt  

sin(βil -ψi )).                                                            (3) 
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where βil = ψi + π/2 + αp and vil = βil + η + 2θ. 
 
Similarly, the contact on ei for fl passing 

through P2 is given by 
  

2wil (θ) = (zi cosβil  - xi sinβil) /  sin(βil -ψi). (4) 
 

Let wil
#denote the maximum of 1wil and 2wil. By 

geometry, wil
#

 can be shown to be 
 

wil
#




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=
2122

121 0
θθθ

θθ

il
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w
w

 (5) 

where  

ipt ψααπθ −−−=12  (6) 

ip ψαπθ −−=2  (7) 
 
Therefore, for wi

 ≤  wi
*, the rolling function, 

Hil(θ) is given by 
 
Hil(θ) = xi sinθ  + zi cosθ  + wil sin(ψi+ θ), (8) 

where  

wil  = 








>
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#

0

00

iili

iilil

il

www
www

w
.  (9) 

 
2) Contact to the left of the Z-axis 

In this case, where wi
 > wi

*, the contact between 
the part and the pin moves such that wi is increasing.  
Therefore, the contact force must be at the right edge 
of the pin friction cone. Rolling is guaranteed if a 
force at the angle of the right edge of the pin friction 
cone generates a positive moments about the P1P2P3 
triangle.  

Let 1wir(θ) denote the contact on ei where fr 
passes exactly through point P1. We can show 
through geometric construction that: 

 
1wir

 (θ) = (2µt zi cos βir – ρ cos(βir-η) – ρ cosνir - 
2µt xi sinβir + µt ρ sin(βir-η)  + µt ρ sinνir) / (2µt 

sin(βir -ψi )).                                                          (10) 
 
where βir = ψi + π/2 - αp and vir = βir + η + 2θ. 
 

There is no angle at which a force at fr will pass 
through P1 or P3 and be higher than 2wir(θ). There-
fore, for wi

 > wi
*, Hir(θ) is given by: 

 
Hir(θ) = xi sinθ  + zi cosθ + wir sin(ψi+ θ),   (11) 

 

where 

 wir  = 

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           (12) 

 
and li is the length of edge ei. 
 
3) Contact on both sides of the Z-axis 

If a part edge has a component to the left of the 
Z-axis and a component to the right of the Z-axis, 
there may be two separated contact regions on the 
edge where rolling can occur. For this reason there 
will be three rolling functions: Hil(θ) for the partial 
edge left of the Z-axis, Hir(θ) for the partial edge 
right of the Z-axis, and Hi

*(θ). For this case, the pin 
at height h can roll the part if Hi

*(θ)  > h > Hir(θ) or 
h > Hil(θ), where θi < θ < θt. 
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Figure 6. Rolling functions Hil(θ), Hir(θ), and H*(θ). 

 
Figure 6 illustrates the functions Hi(θ) where 

the pivot is v5 in Figure 2. In this case αt = 0.65cm, 
αp = 0.09cm, ρ = 9cm, and η = 50°. The kink in 
H2(θ) indicates the rotational angle where 2w2r be-
comes higher than 2w1r. We determine Hi(θ) for each 
visible edge of the stable orientations. Note that 
Hi(θ) must be bounded by the Vi(θ) and Vi+1(θ) and 
is truncated where it intersects those functions. 

D. Jamming Function 
After the part has rotated to θt, rolling phase 

ends and the settling phase begins. The part may jam 
while settling due to the friction. We must insure 
that the part will fall to the next stable orientation 
without jamming.   Under our quasi-static assump-
tions, we do not consider the inertial dynamics (i.e., 
bouncing or having the part continue to rotate past 
its next stable orientation due to momentum). 
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Figure 7. Jamming conditions. 
 

Jamming is the compliment of the rolling proc-
ess. For rolling all forces within the pin friction cone 
must make a positive moment about the P1P2P3 tri-
angle; to guarantee no jamming any force within the 
pin friction cone must not make a negative moment 
about P1P2P3. Figure 7 shows that due to the position 
of the COM during settling the P1P2P3 triangle is 
oriented in the opposite direction as during rolling. 
We again divide our consideration into the situations 
where the contact is at the left/right of Z-axis. 

 
1) Contact to the right of the Z-axis 

When the contact is right of the Z-axis, rotation 
causes the contact to move such that wi is decreas-
ing.  The contact force, therefore, is at fl.  Projecting 
lines at the angle of the left edge of the friction cone 
from P1, P2, and P3 until they intersect the edge, we 
obtain: 

 
3wil (θ) = (2µt zi cos βil + ρ cos(βil-η) + ρ cosνil -

2µtxisinβil + µtρ sin(βil-η)  + µtρ sinνil) / (2µt sin(βil 
-ψi)).                                                                     (13) 
 

Any pin lower than the minimum of these three 
functions will cause jamming. Let qil

# be the mini-
mum of 1wil, 2wil, and 3wil. qil

# can be shown to be 
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where  

ipt ψααπθ −−+=21                        (15) 

ipt ψααπθ −−−=32                        (16) 
  
Therefore, The jamming function for this situation, 
Jil(θ), is then given by 
 

Jil(θ) =  xi sinθ  + zi cosθ  +qil sin(ψi+ θ)      (17) 
 
where 

qil  = 


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and θt < θ < θ1. 
 
2) Contact to the left of the Z-axis 

When the contact is left of the Z-axis, rotation 
causes the contact to move such that wi is increasing. 
The contact force, if exists, is at fr.  In this situation 
it is impossible to cause jamming since fr cannot 
create a negative moment about the P1P2P3 triangle. 
Therefore the jamming function equals 0, i.e., Jir(θ) 
=  0, when wi

 > wi
*. 

 
 
 
 
 
 
 
 
 
 

E. The Toppling Graph 
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Figure 8. The toppling graph for the part in Figure 2. 

 
Figure 8 illustrates the toppling graph which 

combines the radius, vertex height, rolling height, 
and jamming functions to represent the full mechan-
ics of toppling. From the toppling graph the critical 
pin heights for each visible edge of each stable ori-
entation can be determined or shown to be non-
existent. 

The toppling graph can be divided into vertical 
sections between each stable orientation of the part 
on the belt. Each section describes the rotation of the 
part from one stable orientation to the next stable 
orientation. Consider the left most section of the 
graph in Figure 8. The part initially is in a stable 
orientation with θ0 = 0.  We want it to rotate about 
vertex 1 to the next stable orientation with θ1 = 52°. 
Note that Hil is denoted by Hi in this graph for clar-
ity. A pin at height h will achieve this if we can 
draw a horizontal line corresponding to height h in 
the graph beginning at θ0 and ending at θ1 with the 
following characteristics: 

 
1. if Vi(θ) < h < Vi+1(θ), then Hi

*(θ)  > h > Hir(θ) 
or h > Hil(θ), where θ0 < θ < θt; 

2. if Vi(θ) < h < Vi+1(θ), then Jil(θ) < h, where 
θt < θ < θ1; and 

3: h < 
i

max (Vi(θ)),  where θ0 < θ < θt. 

 
The first two criteria are satisfied when the pin 

is above both the rolling height and the jamming 
height on the edge it contacts. When h crosses a ver-
tex function, the part switches contact edges and 
then h must be above the rolling height and jamming 
functions for the new edge.  The third criterion is 
that the pin must not lose contact with the part by 
passing over it during the rolling phase. 

Note on the graph that the solid vertical lines 
indicate the angles of stable orientations and the 
dashed vertical lines indicate different θt. From the 
graph we can determine a range of heights for each 
stable orientation in which a pin will topple the part 
to the next stable orientation, or determine the range 
does not exist.  

The toppling graph described above predicts for 
each orientation of the part the immediate action 
function that takes place when the part hits a pin at a 
specified height. The four possible values of the 
function are: 

 
• Non-action: the part passes under the pin or hits 

the pin but falls back to the same stable orienta-
tion; 
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• Jamming: the part gets stuck; 
• Repeating: the part turns to the next stable ori-

entation and will hit the same pin again; 
• Passing: the part turns to the next stable orienta-

tion and will not hit the same pin again. 
 

For example a pin at height A will cause Pass-
ing; while at B and C Repeating will occur. Note 
that B switches edges during rotation. D is an exam-
ple of Non-action, where rotation begins but is not 
successful due to loss of contact with the part before 
reaching θt. E represents Jamming when the pin con-
tacts with edge e2. 

 

V. PHYSICAL EXPERIMENT 
We conducted a physical experiment using an Adept 
Flex Feeder conveyor belt. The part from Figure 2 
was machined from aluminum and the pin from 
steel. The corresponding friction cone half angles 
are αt = 53° ± 2° (the belt is made from a high fric-
tion material), and αp = 5° ± 2°. The critical pin 
heights predicted by the toppling graph are com-
pared with physical experiment in Table 1. 
 

Critical Pin Heights (cm) Pivot 

Vertex 

Initial 

Contact 

Edge 

Prediction Experiment 

1 2 [2.9, 5.7] [2.8, 5.7] 

1 3 [8.3, 9.5] [8.3, 9.5] 

5 1 [2.6, 4.1] [2.6, 4.1] 

3 4 [1.2, 8.6] [1.8, 8.6] 

2 3 [1.5, 3.4] [1.5, 3.4] 

 
Table 1.  Comparison of predicted pin heights with experiment 
using aluminum part. 
 

 Although our friction measurements are inex-
act, the predictions are close in all cases except the 
lower bound in row 4. Since we project wi onto the 
vertical to find Hi(θ), errors along the edge are pro-
jected and thus reduced by the sine of the edge an-
gle. The sine is close to 1 in the 4th row, thus this 
error is larger. For the upper bounds in this row, the 
top of the edge defines the limit in both prediction 
and experiment. 

 

VI. PIN DESIGN 
As parts enter the part feeder, they can be in any 
stable orientation on the conveyor belt.  We want to 

design a sequence of pin locations that will cause the 
part to emerge in only one final orientation.  After 
constructing the toppling graph, the planning algo-
rithm applies it to design such a sequence or to de-
termine that no such sequence exists.     

 For each stable orientation, we compute the 
immediate action function. This function maps the 
height of the pin to four possible values: Non-action, 
Jamming, Passing, and Repeating. We   extract this 
information from the toppling graph. The complex-
ity of the immediate action function is the same as 
the complexity of the toppling graph: for each of the 
O(n) stable orientations of the part, there are O(n) 
possible intervals linked to actions. 

Rather than the immediate action, we would like 
to know what the final outcome will be after the part 
interacts with a pin. Therefore we define the final 
outcome function for each stable orientation. This 
function maps a pin height to the index of a stable 
orientation, or to the value Jamming.   

The final outcome function can be computed 
from the immediate action functions. For a stable 
orientation fi, the Jamming intervals in the immedi-
ate action function appear as Jamming intervals in 
its final outcome function. The Non-action intervals 
map onto index i. The Passing intervals map onto 
index i-1 (or n+ i-1 if i-1 ≤  0). The Repeating in-
tervals map onto index i-1, or must be further subdi-
vided by considering the immediate action function 
of the next stable orientation. This has to be repeated 
until either all intervals are filled in, or we cyclically 
reach fi again, in which case the remaining intervals 
are labeled jamming (because the part will keep on 
rotating in front of the pin). See Figure 9 for an ex-
ample. 

 
1

5

4

Jamming

f1 f5 f4 f3 f2

Immediate
action function

Final outcome
function

Pin height

 
 

Figure 9. Pin action diagram: the computation of the final out-
come function for stable orientation f1 from the immediate action 
functions. The black vertical bars correspond to Jamming; the 
heavy shaded bars to Repeating; the light shaded bars to Passing; 
and the white bars to Non-action. 
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Because every interval boundary is a boundary 
in one of the immediate action functions, the com-
plexity of the final outcome function is O(n2). We 
need such a function for each of the O(n) stable ori-
entations. 

The final outcome function provides the basis 
for the pin design algorithm. Initially the part can be 
at any stable orientation. After passing a pin, the part 
can still lie on a subset of the stable orientations. 
Clearly, the height of the pin should be such that it 
never jams the part. So, it must lie outside of the 
union of the jamming intervals of all final outcome 
functions. By merging the final outcome functions, 
we derive O(n3) different intervals of pin heights 
which each maps our set of all possible stable orien-
tations onto (smaller) sets of stable orientations. 

For each of the smaller sets we repeat the proc-
ess of merging the final outcome functions, to com-
pute height intervals for the second pin together with 
the corresponding, again smaller, sets of stable ori-
entations. We continue until we reach a set of cardi-
nality one (or sets can no longer be reduced). In this 
way we can compute the smallest set of pins re-
quired to uniquely orient the part. 

In the worst case, this design algorithm can take 
exponential time, O(n3n). We are studying properties 
of the action functions that will yield an algorithm 
with better asymptotic complexity. 

 

VII. DISCUSSION AND FUTURE WORK 

We have studied how industrial parts can be fed 
(oriented) using a sequence of fixed horizontal pins 
to reorient them as they move past on a conveyor 
belt.  We defined the toppling graph, a new data 
structure that explicitly represents the mechanics of 
toppling, rolling, and jamming.  Given the n-sided 
convex polygonal projection of a part, its center of 
mass and frictional coefficients, we described an 
O(n2) algorithm to compute the toppling graph and 
verified its predictions with a physical experiment. 
We then describe an O(n3n) pin design algorithm that 
uses the toppling graph to design a sequence of pin 
locations that will cause the part to emerge in a 
unique orientation or to determine that no such se-
quence exists.   

Our pin height analysis is greatly simplified 
when friction with the conveyor belt is infinite and 
friction with the pin is zero (approximated when the 
conveyor belt is of high friction and the pins are 
implemented with freely rotating bearings). This 
shrinks the P1P2P3 triangle to a line segment with the 
pivot point as the critical point.  This also merges 
Hi(θ) and Ji(θ) into a single continuous function. 
Hi(θ) is minimized in all cases and the increase in 

Ji(θ) due to the increase in conveyor friction is bal-
anced by the decreased ability of the pin to cause 
jamming.   

For cases where no pin sequences exists, we can 
consider introducing a wiper, an angled pin that 
guides the part at particular orientations to fall off 
the conveyor belt or another orienting device such as 
a step22 or ramp.  We are currently25,26 extending the 
toppling analysis to the design of self-aligning jaws 
for a  parallel-jaw gripper as shown in Figure 10. 
 

 
 
Figure 10. A parallel-jaw gripper can rotate the part from its 
initial resting orientation into a desired assembly orientation as it 
is grasped.   
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