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 Abstract—We propose unilateral fixtures, a new class of 

fixtures for sheet metal parts with holes, where holding elements 
lie almost completely on one side of the part, maximizing access 
for welding, assembly, or inspection. Each primary jaw is 
cylindrical with a conical groove that provides the equivalent of 
four point contacts and facilitates part alignment. 

 

A1 A1

A2
A3

We present a two-phase algorithm for computing unilateral 
fixtures. Phase I is a geometric algorithm that assumes the part is 
rigid and applies 2D and 3D kinematic analysis of form-closure to 
identify all candidate locations for pairs of primary jaws. We 
prove three new grasp properties for 2D and 3D grips at concave 
vertices and define a scale-invariant quality metric based on the 
sensitivity of part orientation to infinitesimal relaxation of jaw 
position. Phase II uses a Finite Element Method (FEM) to 
compute part deformation and to arrange secondary contacts at 
part edges and interior surfaces. 
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For a given sheet-metal part, given as a 2D surface embedded 
in 3D   with e edges, n concavities and m mesh nodes, Phase I 
takes O( e + n4/3 log1/3n + g log g ) time to compute a list of g pairs 
of primary jaws ranked by quality. Phase II computes the 
location of r secondary contacts in O( g m3 r ) time.  
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Index Terms —Assembly, Fixturing, Form-Closure, Grasping, 
Modular Fixturing, Sheet Metal, Welding, Workholding. 

I. INTRODUCTION 

SHEET metal parts are created by stamping and bending, 
and often contain holes that can be used for holding. To 

assemble industrial parts such as automotive bodies and large 
appliances, sheet metal parts need to be accurately located and 
held in place by fixtures to permit assembly, welding, or 
inspection. Existing fixturing methods are often bulky 
(limiting access to the part), dedicated to each part (requiring a 
large investment in materials), and designed by human 
intuition (introducing delays and suboptimal designs). 

We propose unilateral fixtures, a new class of fixtures that 
use modular fixturing elements that lie almost completely on 
one side of the part to maximize access for welding, assembly, 
or inspection. The primary holding elements are cylindrical 
jaws with conical grooves that expand between pairs of part 
hole concavities; each grooved jaw provides the equivalent of 
four point contacts and facilitates part alignment during 
loading.   

 
Fig. 1.  The top row shows 2 candidate pairs of primary contacts (A1A2 and 
A1A3) computed in Phase I. The second row is a side view of the part with 
primary contacts A1A2, showing that the primary jaws are cylindrical with 
conical grooves. Two views in the third row illustrate the unilateral fixture that 
results from adding secondary jaws B1 and B2. 

 
We present a two-phase algorithm for computing unilateral 

fixtures. Phase I is a geometric algorithm that assumes the part 
is rigid and locates pairs of primary jaws at part hole 
concavities. For every pair of concavities, we apply a set of 
sufficient conditions to test the part for immobility. We prove 
that a rigid 3D part can be immobilized by jaws at these 
concavities if its 2D projections onto two orthogonal planes 
containing both concavities are immobilized by the projections 
of the jaws and if the conical grooves of the jaws prevent 
rotation about an axis through both concavities. 

In Phase II, we consider applied forces and compute part 
deformations using a Finite Element Method (FEM).  We add 
secondary contacts at the mesh nodes that maximally restrict 
local part displacement. We iterate, adding secondary contacts 
until we find a contact set that satisfies the tolerance 
requirements or until no more contacts can be added.  

Unilateral fixtures align the part into the desired orientation 
as the primary jaws are engaged.  We develop a scale-invariant 
quality measure and show that it is consistent with a physical 
experiment measuring part angular displacement as the 
distance between primary jaws is relaxed. 
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II. RELATED WORK 
Workholding, grasping, and fixturing seek arrangements of 

contacts that restrict the possible motions of a given part. 
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Bicchi and Kumar [2] and Mason [18] provide concise surveys 
of research on robot grasping. Rong and Zhu [29] provide a 
review of fixture design principles, modular fixturing and 
Computer Aided Fixture Design.   

Grasps can be classified as force or form-closure. Form-
closure occurs when any neighboring configuration of the part 
results in collision with an obstacle. Force-closure occurs if 
any external wrench can be resisted by applying suitable forces 
at the contacts [18, 26]. Gripper contacts can be modeled as 
frictional points, frictionless points or soft contacts [31]. 
Reuleaux [25] and Somoff [35] prove that four and seven 
frictionless point contacts are necessary to establish form-
closure in the plane and in 3D respectively and [20] and [17] 
proved that four and seven point contacts suffice. 

Rimon and Burdick [27, 26] were the first to identify and 
introduce the notion of second order force-closure. Immobility 
is defined to occur if any trajectory results in the decrease of 
distance between the part and at least one obstacle it is in 
contact with. First and second orders of immobility arise due 
to the truncation of the Taylor expansions of the distances at 
the first and second order terms respectively. They show that 
generic planar parts can be immobilized (second-order) with 
three frictionless contacts if they are placed with infinite 
precision. Ponce et al [23] give an algorithm to compute such 
configurations. Their analysis is carried out in C-space 

 for an n dimensional part. The translational 
degrees of freedom of the part are represented in ℜ and the 
rotational degrees of freedom are represented by the space of 
rotations SO(n). SO(2) and SO(3) are parameterized by ℜ and 

respectively. Any configuration of the part in n-dimensional 
space is represented as a point in C-space. 

)(nSOC n ×ℜ=

3ℜ

n

1

Rimon and Blake [28] give a method to find caging grasps, 
configurations of jaws that constrain parts in a bounded region 
of C-space such that actuating the gripper results in a unique 
final configuration. They consider the opening parameter of 
the jaws as a function of their positions and use stratified 
Morse theory to find caging grasps.  In this paper, we look at 
the distance between the jaws and use the fact that it is at a 
strict local extremum to show that the part is immobilized. 

Plut and Bone [22, 21] proposed inside-out and outside-in 
grips using two or more frictionless point contacts at linear or 
curved part edges. They show how to find such grips where the 
distance between contacts is at an extremum. They achieve 
form-closure in 3D using horizontal V-shaped circumferential 
grooves (VCGs).  Our unilateral model minimizes fixture 
profile on one part exterior and generalizes their analysis with 
an exact test for 3D form-closure, a new quality metric, and a 
method for locating secondary contacts based on FEM. 
Cheong et al [8] give fast algorithms that generate first order 
form-closure grasps of 2D polygonal parts using two or three 
contacts. They find sets of contact wrenches in wrench space 
whose convex hull contains the origin, using a triangle search 
structure. This algorithm is used to increase the speed of Phase 
I of our two-phase algorithm. 

In fixturing, Hurtado and Melkote [12] study how a fixture’s 
conformability and stability vary with design parameters such 

as number and positions of contacts and geometric properties 
of the fixture elements. They develop two metrics based on 
global and local conformability (based on similarity of shape 
between the part and the circumscribing polyhedron fitting the 
contacts). By minimizing the net complementary energy of the 
fixture and part system, the reactionary forces were evaluated 
at the contacts and used to observe trends of conformability 
and stability as the design parameters varied. Johannesson et al 
[13] analyze tolerance chains and tolerance sensitivities by 
modeling geometric variations in a tree structure. Every 
coupling constraint is modeled in the tree. Parts of the tree are 
extracted for analysis depending on the area of interest. The 
robustness of the assembly is also evaluated using Monte 
Carlo simulations. Wang [39] examines the errors in machined 
features in relation to the errors in locator position and locator 
surface geometric errors. The relation is expressed using a 
critical configuration matrix for the part.  Wang suggests an 
optimal locator configuration based on the error sensitivity of 
multiple part features. Xiong et al [40] develop a statistical 
model for analysis of geometric variations in assemblies. They 
model the stacking of incremental errors in each assembly 
station, and based on locator errors and geometric errors of 
individual parts, determine the error in position or orientation 
of the feature being analyzed. The predicted errors are used to 
study assembly methods and sequences to choose an optimal 
assembly process. Carlson et al [7] perform a root cause 
analysis of dimensional errors in an assembly. They study the 
degrees of freedom of each feature and each locator and track 
assembly variations into the variations at each locator. They 
also derive conditions guaranteeing diagnosability of a 
dimensional error by modeling variations as a linear program. 

Wagner [37] proposes a method to fixture rigid 3D 
polyhedra using struts normal to each surface. He proves that 
first order form-closure of the polyhedron is equivalent to first 
order form closure of each of the three projections of the part 
and the contacts on to the 3 orthogonal planes. An efficient 
geometric algorithm to compute all placements of four 
frictionless point contacts on a polygonal part that ensure 
form-closure is described by van der Stappen et al [36]. Given 
a set of four edges, they show how to compute critical contact 
placements in constant time. The time complexity of their 
algorithm is bounded by the number of such sets. For the 
specialized case of v-grips, their algorithm runs in an expected 
time of O( n2 log  n) for n vertices. 

Recent progress on fixturing deformable and sheet-metal 
parts builds on the work of Menassa and De Vries [19] who 
determine the positions of datum points needed to locate the 
part in the correct plane for 3-2-1 fixturing. They use a finite 
element model of the part to model the deformation, and 
determine fixture locations by optimizing an objective that is a 
function of the deformations at the mesh nodes. Our Phase II is 
modeled on their approach, which is extended by [24] and [5]. 
Rearick et al [24] design a fixture for a sheet metal part by 
using an objective function that is a weighted sum of the norm 
of the deformation and the number of fixtures in the objective 
function. They use a remeshing algorithm, but do not address 
properties specific to sheet metal parts such as buckling. Cai et 
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al describe an N-2-1 fixturing principle in [5]. This is used 
instead of the conventional 3-2-1 principle to reduce 
deformation of sheet-metal parts. They use N ( ≥ 3) locators 
for the primary datum, (i.e. they use N datum points to locate 
the sheet metal part in the correct plane) in their fixtures. They 
model the sheet metal parts using finite elements with 
quadratic interpolation, constraining mesh nodes in contact 
with the primary datum to only in-plane motion. For a known 
force, linear static models are used to predict deformation. To 
make their algorithm faster, instead of remeshing the part for 
different locator positions, they express the constrained 
displacement at the locator by using a linear interpolation of 
displacement at the adjacent nodes. Fixture elements are 
placed such that compressive forces that cause buckling do not 
occur. In contrast, our two-phase approach is a hybrid of 
geometric and FEM methods. 

Wang [38] and Ding et al [9] study using discretized 
domains of fixture element locations to create fixtures. Wang 
[38] describes an algorithm to obtain an optimal fixture for a 
domain of discrete contacts with six locators and one clamp. 
The optimality is obtained by considering localization 
accuracy and force balance at the contacts. Ding et al [9] 
proposes a method for fixture design for curved workpieces by 
discretizing the part’s surface to obtain contact locations. They 
start with a random set of contacts and randomly iterate 
contact locations till form-closure is achieved. The number of 
iterations is reduced by eliminating sets of contacts based on a 
facet that divides the domain of contacts into two parts based 
on the property that the contact wrenches need to positively 
span the wrench space. Only half-space defined by the facet is 
considered. Li et al [15] describe a procedure to design fixtures 
for two sheet metal parts that are to be welded to produce a 
good fit along the seam to be welded. The fixtures are 
designed using a finite element model to determine either an 
optimal fixture or a robust fixture. Li et al [16] describe a 
dexterous part holding mechanism based on vacuum cups and 
model the elastic deformation of the sheet-metal part using 
Finite Element Methods and a statistical data model. The 
results from this model are used to minimize the part’s 
deformation. Shiu et al [34, 33] give a heuristic algorithm to 
analyze the deformation of a sheet metal part by decoupling it 
into beams based on the part’s features. Based on the 
deformations predicted, they give an algorithm to allocate 
tolerances to each feature. 

Asada and By [1] describe a reconfigurable fixturing system 
and study the kinematics of the part in contact with fixture 
elements in the workspace. The derive conditions for uniquely 
locating a part in a fixture and for immobility. For modular 
fixtures, Brost and Goldberg [4] present the first complete 
synthesizing algorithm that guarantees to find a fixture, 
consisting of three locators and one clamp if one exists. They 
enumerate all such fixtures by choosing candidate fixture 
element positions that are at a distance permitted by the edges 
of the part the elements are in contact with.  Rong and Li [30] 
present an interactive Rapid Fixture Design System (RFDS) 
that allows a designer to make use of several databases of 
fixture components, location method, etc. and automates the 

generation of a modular fixture subject to the specifications of 
the user regarding positions and orientations of the 
components. Sela et al [32] consider the fixturing of a sheet 
metal workpiece using clamps and locators fixed on a base-
plate with t-slots. The height of the fixture elements are 
variable, and are adjusted to fit the shape of the part. They 
determine the positions of the locators and clamps by 
formulating a non-linear programming problem in terms of the 
part deformation. Li et al [14] design fixtures for laser welding 
by first identifying a robust design space where the sensitivity 
of part deformations to part dimension and jaw location errors. 
Within this space, they use a genetic algorithm to find a fixture 
that minimizes an objective function defined in terms of the 
distance between the weld joint nodes of each weld stitch. 

Unilateral fixtures are modular and combine simple 
hardware with rigorous algorithmic analysis [6]. This paper is 
a greatly revised and extended version of ideas initially 
reported in [10, 11]. 

III. PROBLEM STATEMENT 
The input is a model of a sheet metal part sheet metal part:  

a contiguous connected 2D surface embedded in 3D with holes 
whose thickness is assumed to be small compared to the 
dimensions of the features on the part. It is defined by a CAD 
model that consists of a list of its edges: both external and 
internal (holes) in terms of spline curves, and a list of Bezier 
surfaces that define the part surface. For each edge, the side of 
the edge on which the part lies is also specified. The desired 
orientation of the part is specified by defining the CAD model 
using a coordinate frame where the desired baseplate lies in the 
x-y plane. A FEM mesh discretizing the part is also specified 
as a triangular or quadrilateral mesh (but other meshes can be 
used) and the part thickness is specified for each mesh 
element. Other inputs are specified below. 

Primary jaws consist of two coaxial frustums of cones 
joined at their narrow ends which have equal radii (called the 
radius of the jaw). Secondary contacts may either be of the 
same shape as primary jaws, or may be surface contacts that 
support the interior of the part.  We assume that contacts are 
rigid and frictionless and do not interfere with each other when 
placed at mesh nodes. The frictionless assumption is 
conservative in the sense that a fixture that holds a part in the 
absence of friction will hold the part when friction is present 
too. However, friction can cause jamming during part loading, 
which is a subject for future research. 

Contacts cannot be placed in specified stay-out regions 
where manufacturing equipment may need to access the part. 
If the contacts need to be confined to a stay-in region, the 
complement of the stay-in region is specified as a stay-out 
region. The part is subjected to a set of known external 
wrenches specified as a list describing each wrench vector and 
the mesh node where it is applied. Tolerance, δ, is specified as 
the magnitude of the maximum deformation of any mesh node 
from its nominal position. 

Input: CAD model of part with FEM mesh (as specified 
above), Young’s modulus and Poisson’s ratio for the part, jaw 
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(1) va lies in region IV of vertex vb, and vb lies in region IV 
of vertex va, at least one of them strictly, (or) 

radii, stay-out regions, list of applied wrenches at nodes, and 
tolerance δ. 

(2) ux.uy = -1 and ux.uab = uy.uab = 0 for at least one set of 
values of ( x, y ) = ( a±1, b±1 ), and the jaws approach from 
outside the region between the parallel lines (see Figure 3). 

Output: A unilateral fixture that holds the part within the 
given tolerance or a report that no solution exists.   

In section IV, we establish preliminary results regarding 
fixturing 2D and 3D parts with primary contacts using two 
jaws. We also present scale-invariant quality metrics to 
evaluate pairs of primary jaw locations.   

 

 

va 

IV. PHASE I: COMPUTING PRIMARY CONTACT PAIRS 

A. Kinematic Analysis: 2D V-Grips 
vb 

1. 2D V-Grip Definition 
Fig. 3. Typical example of v-grips where the second condition in Theorem 2 
holds. 

In order to establish fast sufficient conditions for immobility 
in Phase I of our algorithm for computing 3D unilateral 
fixtures, we develop kinematic results on immobility of 2D 
parts. We give necessary and sufficient conditions for 
immobilizing a 2D part with two jaws. These conditions will 
be repeatedly called with projections of the 3D sheet metal part 
onto pairs of orthogonal planes. 

 

3. Proof of Theorem 1 
Let P represent part perimeter parameterized by arclength s. 

Let sa and sb represent the positions of the jaws on P. Following 
[3] and [28], we express the distance between the jaws as 

ℜ→× PP:σ , a function of (sa, sb). The σ(sa, sb) surface is 
positive except when it touches the plane along the diagonal sa 

= sb (where it is 0), as these points represent coincident jaws. 
The sa-sb plane can be partitioned into rectangles whose sides 
are equal in length to the sides of the polygon. In each of these 
regions, the distance function is defined by a quadratic 
expression. 

Let va and vb be two concave vertices. The unordered pair  
< va, vb > is an expanding or contracting v-grip if jaws placed 
at these vertices will provide frictionless form-closure of the 
part. A v-grip is expanding if the jaws move away from each 
other and contracting if the jaws move towards each other to 
make contact with the part. 

Given jaw radius and the vertices of polygons representing 
the part boundary and holes in counter-clockwise order, we 
can compute a list (possibly empty) of all v-grips and sort this 
by a quality measure defined below. 

To prove Theorem 1, we prove that the following four 
statements are equivalent: 

A: va and vb are concave and they each lie in the other’s 
region I. 2. Test for Form-closure 

B: σ(sa, vb) is a strict local maximum at sa = va, and σ(va, sb) 
is a strict local maximum at sb = vb. The key to this subprocedure is a constant-time test for 

form-closure. We consider a pair of concave vertices < va, vb >. 
Let vx-1 and vx+1 be the vertices adjacent to vx. Let ux-1 be the 
unit vector from vx to vx-1, and ux+1 the unit vector from vx to 
vx+1. Let uxy be the unit vector from vx to vy. 

C: σ(sa,sb) is a strict local maximum at sa = va and sb = vb. 
D: < va, vb > is an expanding v-grip for the part. 
B⇔A: This is clearly seen since the shortest distance from a 

point to a line is along the normal to the line (Figure 4). We construct normals at va, to both edges bordering va. This 
splits the plane into four regions (see Figure 2). We number 
these I to IV. We do a similar construction with vb. 

 

 

sb sb

 

I 
va vava-1 va-1 

III II 
Fig. 4. sbva is a strict local maximum (a) or a local minimum (b) for sa in va-1va. 

(a) (b) 

va  
C⇒B follows from the definitions. 
B⇒C: Assume B. Since B⇔A, A is true. IV 
Therefore, vb lies strictly in region I of va. Hence, there 

exists a small region, say a circle of radius ε (a small length) 
around vb, which also lies completely in region I (Figure 5). 

Fig. 2. Two normals at a concave vertex partition the plane into four regions 
that define v-grips. 

  
Theorem 1: < va, vb > is an expanding v-grip if and only if 

va lies strictly in region I of vertex vb, and vb lies strictly in 
region I of vertex va. 

Theorem 2: < va, vb > is a contracting v-grip if and only if 
either: 
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Corollary 1: If the second condition in theorem 2 is 
ignored, and all the inequalities are made strict inequalities in 
theorem 2, theorems 1 and 2 give necessary and sufficient 
conditions for first order immobility. 

ε 

vb 

This can be proved from 1) first order form-closure is a 
subset of immobility, and 2) center of rotation analysis. For the 
center of rotation analysis, all the configurations excluded by 
making the conditions in theorem 2 stricter can be seen to be 
second order immobility as they give rise to coincident 
normals that cannot cause first order immobility, but cause 
immobility. Also, the remaining configurations are first order 
because the normals cannot coincide and cannot be concurrent 
(as two of the four points of intersection are at distinct 
vertices), and all centers of rotation are excluded as we know 
the part is immobile. 

va 

Fig. 5. σ(va,sb) is a local maximum of σ(sa,sb) for any sb in the neighborhood of 
vb. 

 
Consider any v’a in P, within ε from va, and v’b in P within 

ε from vb. Since va is in vb’s region I, σ(va, sb) is a local 
maximum at sb = vb. Therefore, vavb > vav’b. Since v’b also lies 
in va’s region I, vav’b > v’av’b. Thus, vavb > v’av’b. Therefore, 
C⇔B. Corollary 2: For a non-point jaw with a convex shape, the 

v-grips can be generated by applying the theorems to a 
transformed part generated by doing a Minkowski sum of part 
shape with jaw shape. 

C⇒D: Assume C is true and D is false. Since A⇔ C, A is 
true. Since σ(va, vb) is a local maximum and D is false, the part 
is not held in immobility. Since immobility is defined to occur 
when no neighboring point in C-space is collision-free, this 
means that there exists a neighboring point in C-space that 
does not result in collision. In other words, the part can be 
displaced infinitesimally. Since C is true, at least one jaw must 
break contact with the part in the new configuration. 

This can be seen as the transformed part gives the locations 
of the jaws’ center that result in collision with the part, and 
thus also the shape of the cross sections of the C-obstacles. 
The curved edges generated by doing the sum can be ignored 
as they correspond to undesirable contacts with convex 
vertices of the part. If both jaws break contact, we can move the part along the 

directions ±uab till contact occurs as both vertices are concave 
and hence have an angle of less than 180o

 from the direction of 
the jaws’ approach. As a result, movement in at least one of 
two opposite directions results in contact. From this position, 
we can slide the part along the contact edge moving the vertex 
towards the jaw, till contact occurs with the other jaw or till 
the vertex is at the jaw. Since vavb is a strict maximum, the 
vertex has to be reached. However, since A is true, uab is at 
acute angles to ua-1 and ua+1, and uba is at acute angles to ub-1 

and ub+1. Therefore, when the vertex reaches the jaw, the other 
jaw would collide with the interior of the part: thus the part 
cannot move and is in form-closure. 

4. 2D Quality Metric 
We can compare v-grips based on how much the part can 

rotate when the jaws are relaxed infinitesimally. We define a 
scale-invariant measure of the sensitivity of the grip to such 
infinitesimal disturbances. Given a v-grip < va, vb >, let l = 
σ(va, vb). If the distance between the jaws changes by ∆l, let 
∆θ be the maximum angle the part can rotate. Clearly, ∆θ 
depends on ∆l. We consider the ratio ∆θ / ( ∆l / D), where D is 
the diameter of the part (the maximum distance between any 
two points on the part).  For infinitesimal ∆l, this becomes  
D ( dθ / dl ). We rank pairs of primary jaws based on  
| D ( dθ / dl ) | : smaller ratios correspond to smaller errors.  

 

The maximum error in orientation occurs when one jaw is at 
a concave vertex and one jaw is on an edge. To derive an 
expression for | dθ / dl |, we consider one edge at an angle φ to 
vavb. Using the sine rule applied to the triangle shown in 
Figure 7, 

vbva 

radius: vavb 

( l - ∆l ) / (sin φ ) = l / (sin(φ + ∆θ )) 
Fig. 6. The edges are at acute angles to vavb. If we neglect second order terms, this simplifies to:  

( ) lldld
l

/tan/lim/
0

φθθ =∆∆=
→∆

 D⇒C: Assume D is true and C is false. Then, σ(va, vb) is 
not a local maximum. Either it is a strict local minimum or it is 
not a strict local extremum. If vavb is a strict local minimum it 
can be shown that < va, vb > is a contracting v-grip, and hence 
D cannot be true. If vavb is not a strict extremum, then by the 
continuity of s, the part can move along the contour {(s1, s2) | 
σ(s1, s2) = σ(va, vb)}. This contradicts D. Therefore C is true. 

 

∆θ
l 

l-∆l 

φ
va vb

 
Fig. 7. Deriving an expression for | dθ / dl |. Thus, D⇔ C, completing the proof for theorem 1. We can 

prove Theorem 2 similarly. The second condition in Theorem 
2 arises due to the limiting case where vertex lies on the 
boundary of region IV. 

 
For all four edges, we choose the one with φ closest to 90o, 

which yields the maximum possible change in orientation. For 
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this value of φ, the metric will be | D tan(φ) / l |. This quality 
metric is dependant on the local geometry of the part and is 
scale-invariant since the distance between the jaws scales with 
the diameter of the part. As a result, the first order error in part 
position   is invariant to part diameter. 

B. Kinematic Analysis: 3D VG-Grips 

1. 3D VG-Grip Definition 
We use two orthogonal 2D projections to analyze 3D parts. 

The primary jaws are designed to engage the 3D part at its 
concavities such that the intersections of the frustums in the 
jaws are seated in the plane of the sheet metal part. For the part 
to contact the jaws on the plane of intersection of its frustums, 
the local radius of curvature of the part needs to be large 
compared to the jaws’ radius. If this is not true, contact does 
not occur on the plane, but instead, on the surfaces of the 
individual cones. Therefore, at such candidate jaw locations, 
we assume local planarity of the part and linearity of the edges 
for first order analysis of immobility, since only local shape is 
of importance. We construct tangents at the points of contact. 
We call these tangents the part’s “virtual edges”, and the point 
of intersection of the edges, the corresponding “virtual vertex”. 
If we approximate the part locally using the virtual edges and 
vertices, immobility of the approximation will be equivalent to 
the immobility of the original part up to the first order.  The 
jaws’ positions are described in terms of the virtual vertices. 
Virtual vertices are concave by definition. Given two virtual 
vertices va and vb, we call the unordered pair < va, vb > a 3D 
vg-grip if the part is held in form-closure when the jaws’ 
grooves engage the part at the edges defining va and vb. 

We use two orthogonal 2D projections to analyze 3D parts. 
The primary jaws are designed to engage the 3D part at its 
concavities such that the intersections of the frustums in the 
jaws are seated in the plane of the sheet metal part. For the part 
to contact the jaws on the plane of intersection of its frustums, 
the local radius of curvature of the part needs to be large 
compared to the jaws’ radius. If this is not true, contact does 
not occur on the plane, but instead, on the surfaces of the 
individual cones. Therefore, at such candidate jaw locations, 
we assume local planarity of the part and linearity of the edges 
for first order analysis of immobility, since only local shape is 
of importance. We construct tangents at the points of contact. 
We call these tangents the part’s “virtual edges”, and the point 
of intersection of the edges, the corresponding “virtual vertex”. 
If we approximate the part locally using the virtual edges and 
vertices, immobility of the approximation will be equivalent to 
the immobility of the original part up to the first order.  The 
jaws’ positions are described in terms of the virtual vertices. 
Virtual vertices are concave by definition. Given two virtual 
vertices va and vb, we call the unordered pair < va, vb > a 3D 
vg-grip if the part is held in form-closure when the jaws’ 
grooves engage the part at the edges defining va and vb. 

Given jaw radius and the 3D CAD model of the part, we can 
compute a list (possibly empty) of all vg-grips and sort this by 
a quality measure defined below.  We can also compute 
bounds on jaw cone angles for each vg-grip found. 

Given jaw radius and the 3D CAD model of the part, we can 
compute a list (possibly empty) of all vg-grips and sort this by 
a quality measure defined below.  We can also compute 
bounds on jaw cone angles for each vg-grip found. 

2. Candidate Jaw Locations for the 3D Part 2. Candidate Jaw Locations for the 3D Part 
As stated above, while contact occurs near vertices for a part 

defined by linear edges, parts with curved edges have virtual 
vertices near which the jaws engage the part. Each virtual 
vertex corresponds to a unique candidate jaw location where a 
jaw may be located to engaging the part at the virtual edges 
corresponding to the vertex. Candidate jaw locations and 
corresponding virtual vertices are identified using the 
following subprocedure, which uses the fact that jaws contact 
the part at two points only if there is a concave vertex between 
the points of contact or if part of the edge contained between 
the points of contact is concave and has higher curvature than 
the jaw. 

As stated above, while contact occurs near vertices for a part 
defined by linear edges, parts with curved edges have virtual 
vertices near which the jaws engage the part. Each virtual 
vertex corresponds to a unique candidate jaw location where a 
jaw may be located to engaging the part at the virtual edges 
corresponding to the vertex. Candidate jaw locations and 
corresponding virtual vertices are identified using the 
following subprocedure, which uses the fact that jaws contact 
the part at two points only if there is a concave vertex between 
the points of contact or if part of the edge contained between 
the points of contact is concave and has higher curvature than 
the jaw. 

Step 1: Set list L as list of the part’s concave vertices. Set 
list Lc to an empty list. 
Step 1: Set list L as list of the part’s concave vertices. Set 
list Lc to an empty list. 

Step 2: Traverse each edge of the part. For each edge, 
numerically identify concave stretches with radius of 
curvature less than jaw radius, and add the end points (with 
greater arc-length) to L.  

Step 2: Traverse each edge of the part. For each edge, 
numerically identify concave stretches with radius of 
curvature less than jaw radius, and add the end points (with 
greater arc-length) to L.  

Step 3: For each point i in L, traverse the edge starting from 
the point i in the direction of increasing arc-length, 

constructing discs tangential to the edge on the tangent 
plane of the surface at the point considered till the disc 
touches the part at two points or the entire edge is traversed 
back up to the position of the current element of L. 

Step 3: For each point i in L, traverse the edge starting from 
the point i in the direction of increasing arc-length, 

constructing discs tangential to the edge on the tangent 
plane of the surface at the point considered till the disc 
touches the part at two points or the entire edge is traversed 
back up to the position of the current element of L. 

If the entire edge was not traversed and if the edge at the 
second point of contact is in plane with the disc, and 
the principal radius curvature of the surface at both 
points of contact is larger than the radius of the disc, 
and the disc does not lie in a stay-out region, add the 
center to Lc. Replace the current element of L by the 
point of intersection of the tangents. 

If the entire edge was not traversed and if the edge at the 
second point of contact is in plane with the disc, and 
the principal radius curvature of the surface at both 
points of contact is larger than the radius of the disc, 
and the disc does not lie in a stay-out region, add the 
center to Lc. Replace the current element of L by the 
point of intersection of the tangents. 

Else, delete the current element of L. Else, delete the current element of L. 

Step 4: Traverse Lc for duplicates and eliminate them and 
the corresponding elements in L. 
Step 4: Traverse Lc for duplicates and eliminate them and 
the corresponding elements in L. 

Step 5: Return the list L as the list of candidate locations and 
Lc as the list of centers. 
Step 5: Return the list L as the list of candidate locations and 
Lc as the list of centers. 

3. Sufficient Test 3. Sufficient Test 
As shown in Figure 8, we define a coordinate system such 

that the direction of the x axis is taken from va to vb. In a 
projection perpendicular to the x axis, the z axis is defined as 
the bisector of the acute angle between the projections of jaw 
axes. When jaw axes projections are parallel, the z axis is 
defined at 45o to the jaws’ axes. The y axis is perpendicular to 
the x and z axes using the right hand rule. Let the points of 
contact have position vectors ra1, ra2, rb1 and rb2. Let the 
vectors aa and ab be the axes of the jaws with positive z 
components and the centers of the intersections of the cones be 
ca and cb. (The subscripts a and b denote the jaws at vertices va 
and vb.) We define qa1 as: ex × ((ra1-va) - (ra1-va.ex) ex) = ex × 
(ra1-va), and similarly qb1, qa2 and qb2. 

As shown in Figure 8, we define a coordinate system such 
that the direction of the x axis is taken from va to vb. In a 
projection perpendicular to the x axis, the z axis is defined as 
the bisector of the acute angle between the projections of jaw 
axes. When jaw axes projections are parallel, the z axis is 
defined at 45o to the jaws’ axes. The y axis is perpendicular to 
the x and z axes using the right hand rule. Let the points of 
contact have position vectors ra1, ra2, rb1 and rb2. Let the 
vectors aa and ab be the axes of the jaws with positive z 
components and the centers of the intersections of the cones be 
ca and cb. (The subscripts a and b denote the jaws at vertices va 
and vb.) We define qa1 as: ex × ((ra1-va) - (ra1-va.ex) ex) = ex × 
(ra1-va), and similarly qb1, qa2 and qb2. 

  
Theorem 3: Assuming that the part is rigid, immobility is 

achieved if all of the following are satisfied: 
Theorem 3: Assuming that the part is rigid, immobility is 

achieved if all of the following are satisfied: 
(a) The projection of the part and jaws on the x-y plane is 

a 2D v-grip. 
(a) The projection of the part and jaws on the x-y plane is 

a 2D v-grip. 
(b) The projection of the part and jaws on the x-z plane is 

a 2D v-grip of the same nature (expanding or 
contracting). 

(b) The projection of the part and jaws on the x-z plane is 
a 2D v-grip of the same nature (expanding or 
contracting). 

(c) At least one of the eight angles between qxi and the 
inward normal to the cones at rxi (for x = a, b; i = 1, 
2) is less than 90o, and at least one of the angles 
between -qxi and one of the inward normals at rxi is 
less than 90o. 

(c) At least one of the eight angles between qxi and the 
inward normal to the cones at rxi (for x = a, b; i = 1, 
2) is less than 90o, and at least one of the angles 
between -qxi and one of the inward normals at rxi is 
less than 90o. 
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(c) 
Fig. 8. (a) The x axis is chosen along the line connecting the vertices va and vb. 
(b) In a projection perpendicular to the x axis, the z axis is chosen as the 
bisector of the acute angle between the jaws’ axes’ projections. (c) 2D v-grips 
in 2 orthogonal projections. 

4. Proof of Theorem 3 
The distance between the jaws is defined as the x 

component of the distance between the centers of the cones’ 
intersections. We will show that any small displacement of the 
part requires a decrease in distance between the jaws if one jaw 
is fixed and the other is allowed to translate. Hence, since the 
jaws are fixed, the part will be in form-closure. 

Consider any small displacement of the part. This can be 
denoted as the sum of three translations and three rotations 
(along and about the x, y and z axes). We show that as the part 
is subject to each of these components of displacement while 
keeping the distance between them at the local maximum of 
the possible distances, the distance between them decreases. 

From condition (c) in Theorem 3, any rotation of the part 
about the x axis should result in a decrease of distance between 
the jaws. This is because the vectors qxi, x = a, b; i = 1, 2, give 
the direction of the instantaneous velocities of each contact. 
Hence, if a jaw stays in the same position, it collides with the 
part, i.e. it has to move either towards or away from the vertex. 
It cannot move towards the vertex because of the following 
reason: if we scale down the part and the jaw about the vertex, 
such that the distance between the scaled jaw and the vertex is 
equal to the distance between the vertex and the jaw after the 
rotation, the scaled jaw would collide with the part after an 
identical rotation (since the conditions are scale-independent). 
Since a smaller jaw would collide with the part in such a 
position, the original bigger jaw will also collide with the part, 
since the vertex and edges of the part do not change on scaling. 
Hence, each jaw is pushed away from the vertex. 

First order form-closure is robust in the sense that 
immobility is guaranteed allowing for small changes in part 
geometry. Since none of the axes are perpendicular to the 
planes of intersections of each jaw’s cones, conditions (a) and 
(b) of Theorem 3 ensure that the projections of the part on the 
x-y and x-z planes are in form-closure after an infinitesimal 
rotation of the part about the x axis. We note that the distance 
between the vertices does not change as a result of rotation 
about the x axis. Since the distance between the vertices 
remains the same due to such a rotation and since the edges are 
linear and the vertices concave, it follows from Theorem 1 that 
the distance between the jaws decreases. 

Condition (a) also implies that translation along the x or y 
axes, and rotation about the z axis will result in further 
increase in the distance between the jaws. Condition (b) 
implies that any further translation along x or z axes and 
rotation about the y axis leads to another increase in distance. 
Thus, any displacement of the part results in a displacement of 
the jaws, hence proving that form-closure is achieved if the 
jaws are fixed. 

5. Bounds on Cone Angles 
Conditions (a) and (b) in theorem 3 are independent of the 

cone shapes for a given jaw radius. Hence, bounds on the cone 
angles that satisfy Theorem 3 are determined only by the 
condition (c). In the worst case, ±qxi, x = a, b, are tangential to 
the cones for at least 1 value of i = 1, 2. Hence, if we project 
±qxi to the plane containing rxi and ax, the acute angles 
between the projections and ±ax give a candidate lower bound 
for the half cone angle for the upper cone. For instance, the 
lower bound is chosen as the higher of candidate bounds 
obtained from qx1 and qx2. For the 3D sheet metal part example 
shown in Figure 1, the bounds for the half cone angles for the 
four cones were 18o, 21o, 18o, and 26o. 

6. 3D Quality Metric 
We generalize our scale-invariant quality metric to 3D parts:  

it is the maximum change in orientation along any of the 
coordinate axes due to an infinitesimal relaxation of the jaws,  
| D (dθ / dl) |, l being the distance between the jaws, and θ  the 
orientation. Based on the above sufficient test, for the y and z 
components of orientation, this reduces to the metric defined 
for 2D. For rotation about the x axis, this is not the case. We 
find an approximate value for | D (dθ / dl) | by assuming that 
the contacts lie on the vertices of the v-groove in the projection 
of the jaws on a plane perpendicular the plane containing the 
contacts and the edges. Since the contacts on the jaw 
projection hold the jaw in a v-grip, we know that distance 
between the contacts increases by qa∆θ, where qa is the quality 
metric for this v-grip. Hence, if the original distance between 
the centers of jaw a and the vertex is da, the distance after 
rotation is da (1+ qa∆θ / | ra1-ra2 | ). Thus, the metric for 
rotation about the x axis simplifies to D ( | ra1-ra2 | / da qa + | 
rb1-rb2 | / db qb ). The quality of the vg-grip is the maximum of 
the metrics for all three rotations, which is scale-invariant. 

V. PHASE II: COMPUTING SECONDARY CONTACTS 
Phase I assumes the part is rigid and computes a list of pairs 

of jaws that immobilize the part.   Phase II considers each pair 
and adds secondary contacts (if necessary) using an FEM 
deformation model. Secondary contacts are of two types: 1. 
edge contacts that are shaped similar to primary jaws 
(cylindrical with conical grooves) and engage the part at its 
edges, and 2. surface contacts that are cylindrical with rounded 
tips that provide point contacts on part surfaces. 

We model part deformation we use Finite Element Method 
(FEM), based on the given mesh. Forces or wrenches specified 
at each mesh node (as part of the input to the problem) are 
included as force boundary conditions in the FEM model. 
Displacement boundary conditions are generated by the 
contacts. Edge contacts constrain the point of contact to lie on 
the tangent to the edge, and surface contacts constrain the 
point of contact to lie on the tangent plane to the surface at the 
point of contact. The FEM model gives the deformation as a 
vector of the displacements of each mesh node. 

We consider the list of primary contact pairs generated by 
Phase I. We use the deformation model to determine the 
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displacements of each node. For each mesh node on the part’s 
edges, we consider the magnitude of the displacement in the 
plane containing the tangent to the edge and the normal to the 
surface at the node. The magnitude is positive if the 
component of displacement in the tangent plane of the part is 
away from the interior of the part, and negative otherwise. For 
each node on the part’s interior, we consider the component of 
the displacement along the negative z axis in the frame of 
reference of the CAD model. We then choose the node with 
the highest such component of displacement from among both 
edge and surface nodes that do not lie in stay-out regions, and 
add a contact at this node. We note that due to the nature of the 
FEM interpolation, the maximum displacement for any point 
on the part lies at an FEM node. We add a contact at this node. 
We perform this for each pair of primary jaws generated by 
Phase I. 

We repeat the above subprocedure to add more secondary 
contacts until we find a contact set that satisfies the tolerance 
requirements or until no more contacts can be added. Figure 9 
shows an example of adding secondary contacts during Phase 
II. 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Deformed and undeformed meshes for first two iterations of Phase II. 
Final fixture (c) required four iterations. 

VI. COMPUTATIONAL COMPLEXITY 
Recall that the polygonal part is described by n vertices. For 

the polygonal part, we find k ≤ n concave vertices flanked by 
straight edges in O( n ) time. We then consider each pair of 
concave vertices, checking the conditions in Theorems 1 and 2 
in constant time. The result is a set of up to k2 v-grips. Thus, all 
v-grips are found in O( n + k2 ) time. Computing the quality 

metric takes constant time for each v-grip and sorting requires 
O( k2 log k ) time as there are at most k2 v-grips.  

For a sheet metal part, given e edges and n concavities, 
O(e+n) time is needed to determine the concavities. There are 
at most O(n2) pairs of candidate primary jaw locations. We can 
use the output-sensitive algorithm of Cheong et al [8] to 
compute them in time O( e + n4/3 log1/3n + g ) time, where g is 
the number of pairs found. An additional O( g log g ) time is 
required to sort the pairs by the quality metric. 

In Phase II, running the FEM deformation analysis for the 
mesh of m nodes involves solving a set of O(m) linear 
equations which requires time O( m3 ).  To find unilateral 
fixtures with r contacts, Phase II runs in O( m3 r ) time for each 
pair of primary contacts, yielding an overall runtime of O( e + 
n4/3 log1/3n + g log g+ g m3 r). 

VII. IMPLEMENTATION AND EXPERIMENT 
We implemented the 2D v-grip subprocedure in Visual 

BASIC on a Pentium III 1.13 GHz PC running on Windows 
XP. For a part with 30 vertices and 10 concave vertices the 
program execution time was under 0.0084 seconds. A Java 
implementation is available for online testing at 
http://alpha.ieor.berkeley.edu/vgrip. 

For Phase II for the sheet metal part shown in Figure 9, we 
used ANSYS to perform 4 iterations using a quadrilateral 
mesh with 274 nodes in 1.3 seconds. For this example we used 
a tolerance equal to half the allowed error in relative positions 
of points on mating parts where spot welds occur for 
automotive parts as specified by the Ford Motor Co.   

A2 

A1 

As illustrated in Figure 10a, we constructed an experimental 
apparatus to study how the quality metric compares with part 
orientation error as the jaws are relaxed.  We used a chrome-
plated automotive part 9.4” in diameter held by a pair of 
primary jaws. One primary jaw was fixed on the baseplate, 
and the other was constrained to move towards or away from 
the first jaw. The second jaw was manually actuated by 
rotating a ballscrew. A locking screw was used to fix the jaw 
rigidly at any position. We used a dial gauge mounted on the 
baseplate to measure the distance between the jaws. To 
accurately measure the angular orientation of the part, we 
mounted a mirror on the part and reflected a laser beam off the 
mirror onto a surface with a 1mm grid.   

B1 

A2 

A1 

B1 

A2 

B2 B3 

Initially, the part was immobilized using the pair of primary 
contacts. We achieved this by incrementally increasing the 
distance between the jaws, tightening the locking screw, and 
manually applying small forces on the part to test if it could be 
displaced. Once the part was held rigidly, we measured and 
recorded the distance between the jaws. We then loosened the 
locking screw and incrementally relaxed the jaw in steps of 
0.0005”. At each increment, we tightened the locking screw, 
perturbed the part by hand, and recorded the maximum error 
in orientation. We reduced the distance between the jaws 50 
times, and then increased the distance in increments of 
0.0005” till a 3D vg-grip was achieved again. This was done 
to check for plastic deformation of any portion of the 
experimental apparatus. We repeated this procedure twice to 
get a total of 200 readings.  In Figure 11, we   plot orientation 

A1 
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error as a function of jaw separation (relative to fully 
expanded position).   The plot confirms that primary contact 
pair  A1A3 allows more angular error than primary contact pair 
A1A2, consistent with the quality metric. 

 

 
(a) 

 

 
(b) 

Fig. 10. The apparatus used to compare the quality metric with physical 
experiments is shown in (a). A dial gauge is used to measure the relaxation of 
the jaws. The error in orientation is measured by reflecting a laser on a mirror 
on the top-right of the part. Unilateral fixture prototype shown in (b) has 2 
primary jaws A1 and A3 activated by solenoids. Secondary contacts are at B1 
and B2. 

We constructed a prototype of a unilateral fixture (Figure 
10(b)) for the same part. Primary jaws are actuated by 
solenoids to move along dovetail tracks. We measured the 
repeatability of part orientation when the jaws were actuated. 
We carried out 50 trials each for simultaneous actuations of 
the primary jaws and both sequences of actuating the jaws one 
at a time. 

Actuating the jaw A1 in 10(b) before jaw A2 resulted in 
higher precision. The errors over the 150 trials ranged from -
0.24 to +0.12 degrees with the exception of three outliers, with 
a standard deviation of 0.11 degrees. 

We represent the error as the error in orientation since 
unlike position errors, it is independent of the reference points 
chosen for measurement for rigid bodies. As noted in section 
IV.A.4, the first order position error is invariant to scale for a 
given relaxation of the jaws. This is because the distance 

between the primary jaws scales with the part making the 
quality metric scale-invariant. 
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Fig. 11. Quality metric comparison. Using the apparatus shown in Figure 10a, 
part orientation error is measured as a function of jaw separation for the two 
primary contact pairs shown in Figure 1. Jaw separation is zero when the jaws 
are fully openend. The scale-invariant quality metric is related to the slope at 
zero of the curve as described in section IV.B.6. The quality metric for pairs 
A1-A2 and A1-A3 are 31.74 and 77.43 respectively, indicating that the former 
pair  has better resistance to part orientation error, as confirmed by the data. 

VIII. SUMMARY AND FUTURE WORK 
In this paper we proposed unilateral fixtures, a new class of 

fixtures for sheet metal parts where primary holding elements 
are cylindrical jaws with conical grooves that expand between 
pairs of part hole concavities and secondary contacts are 
arranged to reduce part deformation.   We develop new 
analytic results in 2D and 3D, new quality metrics, and specify 
a two-phase algorithm that analyzes part geometry to 
automatically compute unilateral fixtures 

In future work, we will develop a formal model of unilateral 
fixture loading and algorithms for placing loading contacts.  
We will consider the effects of friction and gravity during 
loading.  We will also consider unilateral fixtures for pairs of 
mating parts. We will model the deformation of mating parts 
and minimize the error in the relative deformations of points 
where joining occurs.   
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