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Abstract

The vibratory bowl feeder is the oldest and still most com-
mon approach to the automated feeding (orienting) of in-
dustrial parts. In this paper we consider a class of vi-
bratory bowl filters that can be described by removing
polygonal sections from the track; we refer to this class
of filters astraps. For ann-sided convex polygonal part
andm-sided convex polygonal trap, we give anO((n +
m) log(n + m)) algorithm to decide if the part will be
rejected by the trap, and anO((nm(n + m))1+�) algo-
rithm which deals with non-convex parts and traps. We
then consider the problem of designing traps for a given
part, and consider two rectilinear subclasses,balconies
andgaps. We give linear andO(n2) algorithms for de-
signing feeders and have tested the results with physical
experiments using a commercial inline vibratory feeder.
Our algorithms can be tested using online java applets:
http://ford.ieor.berkeley.edu/trap-design .

1 Introduction

Part feeders, which singulate and orient parts prior to pack-
ing and insertion, are critical components of an automated
assembly line. Although there is a substantial body of re-
search in analytic feeder design, it has not yet produced a
science base for practitioners, who still rely on instinct and
rules-of-thumb [16]. Thus feeder design remains one of the
biggest obstacles to automated manufacturing.
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Figure 1: Vibratory bowl feeder track [7].

The oldest and still most common approach to automated
feeding is thevibratory bowl feederwhich consists of a
bowl filled with parts surrounded by a helical metal track
[7]. The bowl and track undergo an asymmetric helical
vibration that causes parts to move up the track, where they
encounter a sequence of mechanical devices such as wiper
blades, grooves, gaps, and balconies. Most of these devices
are filters that serve to reject (force back to the bottom of
the bowl) parts in all orientations except for the desired one.
Thus a stream of oriented parts emerges at the top after
successfully running the gauntlet (See Figure 1).

In this paper we consider a class of vibratory bowl fil-
ters that can be described by removing polygonal sections
from the track; we refer to this class of filters astraps. We
first give algorithms to decide if a polygonal part will be
rejected by the trap. We then consider the problem of de-
signing traps for a given part, and consider two rectilinear
subclasses,gapsandbalconies. Proofs of some theorems
can be found in a technical report [5].

2 Related Work

Space does not permit an adequate review of research in
part feeding. An excellent introduction to mechanical parts
feeders can be found in Boothroyd’s book [7], which de-
scribes vibratory bowl feeders in detail as well as non-
vibratory feeders such as the magnetic and revolving hook
feeders. Sony introduced a novel approach using random



motion of parts over part-specific pallets [22, 20]. A vari-
ety of sensor-based alternatives to mechanical bowl feeders
have been proposed. For example, Carlisleet al. [9] de-
scribe a system that combines machine vision with a high-
speed robot arm and [18] use an optical silhouette sensor
with air nozzle to reject parts on a feeder track.

Specific to vibratory bowls, researchers have used sim-
ulation [14, 4, 19], heuristics [16], and genetic algorithms
[10] to design traps. Perhaps closest in spirit to our work is
M. Caine’s PhD thesis which develops geometric analysis
tools to help designers by rendering the C-space for a given
combination of part, trap, and obstacle [8].

Consider a part feeding system that accepts as input a set
of part orientations�. Based on a definition by Akellaet
al [1], we might say that a system has thefeeding property
if there exists some orientation� 2 � such that the system
outputs parts only in orientation�. This paper reports on
algorithms that design traps with the feeding property. We
are not aware of any previous algorithms for the systematic
design of vibratory bowl traps.

3 Geometric Modeling

Throughout this paper, we focus on planar motion of the
part as it slides across the track while maintaining contact
with the vertical railing. In the figures, the railing is coin-
cident with thex axis and the part moves in the positivex
direction. We denote the part byP , its center of mass byc,
and the trap byR. We focus on cases whereP is a polygo-
nal part withn vertices. The boundary of the trap belongs
to the track, and therefore supports the part. The interior
of the trap cannot support the part. We denote the interior
of a shape byint(�). The part of the track underneathP ,
supporting it isS = P � int(R).

The track is slightly tilted toward the railing so that the
part remains in contact with the railing as it moves along
the railing. The radius function for the part identifies stable
orientations of the part against the railing [13].

Definition 3.1 The radiusof a part at an angle� is the
distance from the center of mass to the line tangent to the
part, and orthogonally intersecting the ray from the center
of mass in the direction of�.

Each stable orientation ofP corresponds to a local mini-
mum in the radius function. The stable orientations of the
part can easily be computed in linear time from the descrip-
tion of the part [17]. There are onlyO(n) stable orienta-
tions of the part against the railing.

We investigate the conditions that cause a part to drop
through a trap. Let us for the sake of simplicity first fix
position of the part with respect to the trap. Even when the
part is partially supported, i.e.S 6= ;, it might still drop.

(a) (b)

Figure 2: (a) A safe pose. The triangle is evidence of safe-
ness. (b) An unsafe pose of the same part above a different
trap.

Definition 3.2 LetP be a part with center of massc. Let
R be a trap in the track of the bowl. The partP is safe
if and only if there exists a triangle� = ft1; t2; t3g with
c 2 �, andt1; t2; t3 2 S. Otherwise,P is rejected.

In other words, there are three points of the part around the
center of mass, which are supported by the track. Note, that
the center of mass itself need not be supported.

We now state a lemma that gives a relation between the
convex hull of the intersection of the part and the trap and
the safeness of the part. LetCH(�) denote the convex hull
of a shape.

Lemma 3.3 P is safe if and only ifc 2 CH(S).

By a standard map overlay algorithm,S = P � int(R) can
be computed inO((n+m+ k) log(n+m)) time. Here,k
is the complexity of the intersection of the part and the trap.
The convex hull can be computed inO(k) time. The num-
ber of points,k, can be reduced toO(n+m) by only taking
into account the leftmost and rightmost intersection of the
part and the trap, per edge of the trap. These intersections
are computed using anO((n+m) log(n+m)) sweepline
algorithm. Hence,S is computed inO((n+m) log(n+m))
time. (For these standard computational geometry algo-
rithms we refer to the book of De Berget al. [12]).

4 Analyzing a Trap

The analysis problem is to decide whether or not a part in a
given orientation will be rejected (fall through) as it moves
in the+x direction along the railing and over the trap.

To analyze the safeness of the part, we consider the set of
intersections between part and gap edges. This set changes
as the part moves across the trap. We first determine which
edges of the part are intersected by the edges of the gap
as the part moves over the track. Second, we determine
in which order the edges intersect each other. Therefore,
we first sort the vertices of the part and the trap by theiry-
coordinate. Now, we have they-coordinates of every edge,
either from the trap, or the part.

We merge the edges of the part with the edges of the trap,
and determine eachx position of the part where a part edge



intersects with a trap edge. These “events” characterize the
combinatorial changes in the intersection of the trap and
the part during the motion. This preprocessing step takes
O(n + m) time in the convex case andO(nm log(nm))
time otherwise.

A basic ingredient of our algorithm is to compute when
the center of mass crosses a line defined by two intersecting
pairs of trap and part edges. The position of an intersection
point of a trap and a part edge is linearly dependent on the
position of the part. This implies that the equation which
describes the colinearity of the center of mass and the two
intersection points is quadratic, and has at most two solu-
tions.

The running time of the analysis algorithm is dependent
on the shape of the part and the shape of the trap. If both
the part and the trap are convex, then the problem is con-
siderably easier to solve.

4.1 Convex Part, Convex Traps

For a convex part with a convex trap, the condition which
describes the safeness of the part can be reformulated in
terms of the vertices defined by intersections of the part
and the trap edges.

Lemma 4.1 Given a convex partP with center of massc,
and a convex trapR. P is safe if and only ifc is in the
convex hull of the vertices ofS \R or c =2 R.

We restrict ourselves to the part of the motion whenc 2 R,
which is a necessary condition for rejection of the part. We
maintainCH(S\R), and check whether the center of mass
is always insideCH(S \ R).

As mentioned, during the motion of the part, intersec-
tions between the part and the trap edges may appear and
disappear. Also, intersection points move. Fortunately, in
our case, there are only four types of events at which the
combinatorial structure of the convex hull changes. Details
are in the technical report [5]. The four events occur when
(1) a vertex ofP moves across an edge ofR, introducing
or deleting a vertex ofCH(S \R); (2) an edge ofP moves
across an vertex ofR, introducing or deleting a vertex of
CH(S \ R); (3) a vertex ofP moves across an edge ofR,
changing the defining edges of a vertex; (4) an edge ofP
moves across an vertex ofR, changing the defining edges
of a vertex.

Every event only requires a constant complexity update
of the convex hull. By appropriately storing the convex
hull, we can locate the place where the update is necessary
in logarithmic time. Hence, the events can be handled in
logarithmic time. After preprocessing, we know at which
positions of the part, edges of the trap coincide with ver-
tices of the part and vice versa. Therefore, maintaining the
convex hull takesO((n+m) log(n+m)) time.

During part motion, the center of mass always has the
same distance to the edge of the track. Therefore, at any
moment during the motion, there are only two edges of
CH(S \R) that the center of mass can possibly cross. The
intersecting edges of the trap and the part defining these
edges might change, though. Every time the description of
a relevant edge changes, a new event is generated for the
position at which the center of mass (C.O.M.) will cross
the new edge. This is accomplished without increasing the
asymptotic running time. From the motion of the center of
mass, and the motion of the relevant edges we derive poses
of the part at which the center of mass leaves the convex
hull. We add these poses as extra events. We handle such
events as follows. We first check if the event is still valid,
by checking if the edge associated with the event still is a
relevant edge. If so, we report dropping of the part, other-
wise, we discard the event. This gives no extra overhead
for the algorithm. The following theorem summarizes the
result.

Theorem 4.2 Testing one orientation of a convex part
against a convex trap can be accomplished in timeO((n+
m) log(n+m)).

4.2 Non-convex Part, Non-Convex Traps

In this section we briefly discuss how to test a pose of a
not-necessarily-convex part against a not necessarily con-
vex trap in the track. An approach with a promising time
bound is the extension of the method of the previous sec-
tion. Unfortunately, Lemma 4.1 is no longer valid. We
must take into account supports of the part outside the trap.
We have to maintain the convex hull of a set ofnm moving
and appearing and disappearing points. It turns out, that we
can use an adaptation of the algorithm of Baschet al.[3, 2],
leading to an algorithm withO((nm(n+m))1+�) running
time for any constant� > 0. We do not discuss this algo-
rithm in this version of the paper, the interested reader is
referred to the full version [5].

Theorem 4.3 Testing one orientation of a polygonal
part against a polygonal trap can be accomplished in
O((nm(n+m))1+�) time.

5 Designing Traps

In this section we discuss how to design one trap such that
the track satisfies the feeder property, i.e. only one orienta-
tion of the part survives the trap.

In the first subsection, we will discuss “gaps” as illus-
trated in Figure 3. In the second subsection we will discuss
“balconies”. The edges of gaps and balconies are orthogo-
nal to the railing.






Figure 3: A gap in the track. The edges of the gap are
orthogonal to the railing

5.1 The Gap

We assume, for a start, thatP is convex. To get some flavor
of the problem, we first show what happens if we move the
part along a gap of arbitrary width. We start with the part to
the left of the gap; the part is safe. During the motion, there
might be a rejected position, if the gap is wide enough. At
the end, when the center of mass is to the right of the right
edge of the gap, the part is safe again. The position of
the part at which the safeness of the part changes we call
a critical pose(See Figure 5). If the gap is small enough,
then the part remains safe throughout the whole motion,
and there are no critical poses.

We focus on thecritical gap-width,
: the part passes
safely over this gap but is rejected for gap-widths
+ �, for
any� > 0. We compute the critical gap-width for a part in
a given orientation along the railing.

The part is safe if and only if there is a supported triangle
around the center of mass. This implies that if the part is
rejected, then the supported area of the part is contained
in a half-plane that does not contain the center of mass.
We distinguish two different types of rejected poses of the
part: (1) the part is only supported to the left (or the right)
of the center of mass; (2) the supports are contained in a
half-plane below (or above) the center of mass.

In the first type of rejected poses, the part can only be
supported by one side of the gap, either the left or the right
side. The second type of rejected poses correspond to poses
in which the part is supported by both sides of the gap. See
the last two frames of Figure 4.

Figure 4: The types of rejected poses.

The critical gap-widths related to the first type of poses
are relatively easy to compute by considering the radius
function of the part at� � �

2
and� + �

2
. Clearly, if one of

these radii is less than the gap-width, then the part will fall
either forward or backward. Thus, the critical gap-width

is at mostminfradius(� � �

2
); radius(� + �

2
)g.

The critical gap-width for the second type of critical
poses is a bit harder to compute. Let us investigate how
the supports of the part can be contained in a half-plane be-
low the center of mass (the case for the supports above the

center of mass is similar). The line defining the half-plane
plays a crucial role in the analysis. Let us picture a part
that is supported by two sides of the gap. The supported
area of the part now consists of two convex regions, one to
the left of the gap, and one to the right of the gap. The cen-
ter of mass is contained in the gap. A half-plane extending
downward and containing the supported area will always
contain the entire lower half of the convex hull of the part.
Therefore, the center of mass has to lie in the upper hull of
the part to obtain an rejected pose.

A half-plane corresponding to a critical pose of the part
is tangent to both the supported regions, as well as to the
center of mass. In other words, the intersection points of
the upper hull of the part and the gap, and the center of
mass are colinear. Figure 5 shows an example of a critical
pose of a convex part.

Computing the critical gap-width is accomplished by ro-
tating a line around the center of mass, hereby sweeping
over all critical poses of the part which in general have dif-
ferent gap-widths. The gap-widths corresponding to a crit-
ical pose is the horizontal distance between the intersection
points of the line and the edges of the (upper hull of the)
part. During the sweep, a linear number of pairs of edges
are intersected by the line. For each such pair of edges
of the upper hull of the part we compute the smallest gap-
width such that there is a critical pose during the motion.
The maximum of these gap-widths is the critical gap-width
corresponding to the second type of rejected poses of the
gap. This computation takes linear time.

Theorem 5.1 For any orientation of the part, the critical
gap-width can be computed inO(n) time.

Corollary 5.2 Let P be a convex, polygonal part withn
edges. InO(n2) time we can design a feeder with a gap, if
such feeder exists, or report failure otherwise.

If we drop the assumption thatP is convex, the analysis
is a bit more complex. But, it turns out that the critical
gap-width can be computed inO(n logn) time, leading to
anO(n2 logn) algorithm to compute the feeder gap-width.

5.2 The Balcony

In this section, we treat a trap called abalconywhich nar-
rows the supporting surface of the track. Like a gap, a bal-
cony is rectilinear. We can define this trap by giving the
width, �, of the track. The trap is at least a long as the
length of the part. See Figure 1 for an example.

l

Figure 5: A critical pose.



For a balcony, this is also a sufficient condidtion.

Theorem 5.3 LetP be a part with center of massc. LetR
be a balcony trap having width�. If at some moment dur-
ing the motion,c 2 int(R), then the part will be rejected.

Recall that the distance fromc to the railing is exactly the
radius of the part in the orientation it is traveling in. Hence,
the theorem tells us that orientations with radius greater
than the balcony-width drop off the track, and orientations
with radius smaller than the balcony-width remain stable.
The critical balcony-width for a given orientation is ex-
actly its radius. Therefore, using a balcony, the orientation
with the smallest radius can be selected by the bowl feeder.
Clearly, this minimum can be computed in linear time.

Theorem 5.4 LetP be a polygonal part withn vertices. In
O(n) time we can design a feeder using a balcony, if such
feeder exists, or report failure otherwise.

Note that the railing of the track always touches the part
at the convex hull. Therefore, the given analysis holds for
both convex and non-convex parts. A balcony can select
orientations with a unique smallest radius. The only parts
we cannot feed using a balcony are parts for which the min-
imal radius is not unique.

5.3 Parameterized Traps

In the previous two sections, we discussed simple traps
such as gaps and balconies that can be described with only
one parameter. More complicated traps can be specified
with more parameters.

One way to look at the problem of designing a trap which
is specified byk parameters, is to consider it as an arrange-
ment of algebraic surfaces which divides a higher dimen-
sional space into cells for which the part is safe, and cells
for which the part is rejected. The space is spanned by the
parameters of the trap, and the position of the part above
the trap. The algebraic surfaces are derived from the higher
dimensional boundaries of the convex hull of the part and
the trap in different configurations. This is very much in
the flavor of general robot motion planning using a cell de-
composition approach. We refer the reader to Latombe’s
book [15] for an overview of robot motion planning, and to
the paper of Schwartz and Sharir [21] for a solution to the
general motion planning problem. Computing and process-
ing the cells can be done by Collins’ cylindrical algebraic
decomposition [11], and is therefore doubly exponential in
k. Details and possible improvements are in [5].

6 Experimental Results

To facilitate study, we implemented a java applet
that allows users on the internet to experiment with

Trap

Rejected Part

Accepted Part

Figure 6: Trap Design Applet.

our trap analysis and design algorithms. With a
mouse, users can create a polygonal part. The ap-
plet automatically designs traps to feed the given
part and demonstrates the results with animation:
http://ford.ieor.berkeley.edu/trap-design .

One function in the applet is an analytic test to decide if
a polygonal part, in its current position and orientation, will
fall through a given trap. For a polygonal part sliding across
a trap, the applet predicts when, if ever, the part reaches a
point where it will fall in.

Instead of using the algorithm of Section 4.2, we cur-
rently use a simple algorithm which does a repeated search
for support triangles. Even though the theoretical running
time of this algorithm is rather poor (O((nm)5)), it runs
fast in practice.

The applet is also able to design balconies using the al-
gorithm of Section 5.2. It computes the radius function of
the user’s part. If there is a unique minimum value, a bal-
cony with this width will ensure that all other poses with a
larger radius will fall prey to the trap.

The applet can also design a type of trap we did not dis-
cuss in the paper. This trap consists of a “bridge” or pair of
inner and outer balconies. Two parameters define this trap:
the width of the bridge and width of the balcony at the side
of the railing.

After designing the traps, the applet simulates the behav-
ior of the parts as they are randomly rotated and fall against
the railing, and then move along the track. We are currently
working to incorporate gap design into the applet.

Also, we built a physical inline vibratory feeder and suc-
cesfully tested various traps. See Figure 7 for a picture of
our feeder.

7 Conclusion

In this paper, we report algorithms for the planar analysis
and design of traps for polygonal parts moving across a



Figure 7: Part on track and railing mounted on Model
5300A.1 (T-18) adjustable inline vibratory feeder from Au-
tomation Devices, Inc. Approximate length 18 inches. The
traps were designed by the algorithm and cut with a milling
machine. The feeders successfully feeds a stream of these
parts.

feeder track. We are not aware of any previous algorithms
for the systematic design of vibratory bowl traps.

Treating parts and motion in all of their three-
dimensional glory will require additional work, for ex-
ample consider the common technique used for feeding
screws, where a slot is used such that the screw shaft drops
in, but the screw head prevents the screw from falling back
into the bowl. We are working to extend our analysis to 3D.

We are also investigating systematic algorithms for the
design of other commonly used feeder devices such as
blades, wipers, and ramps. Armed with these tools, we can
then address the planning problem, which is to automati-
cally design an optimal sequence of such devices to deliver
a desired part orientation.

Our goal is to develop complete algorithms for synthe-
sizing feeder tracks: given part geometry, a complete algo-
rithm will either find a track if one exists or report that no
track exists for this part. Complete algorithms have been
reported for feeding with parallel-jaw grippers [13] and for
fences on a conveyor belt [6].
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