
Smart Linear Actuator User’s Guide

Table Of Contents
Smart Linear Actuator 1

Operating Software 1.9 User Manual .. 1

New features summary 3
v1.9 ... 3
v1.8 ... 3
v1.7.1 .. 5
v1.7 ... 5
v1.6 ... 6
v1.5.1 .. 6
v1.5 ... 6
v1.4.1 .. 8
v1.4 ... 9
v1.3 ... 9
v1.2 ... 10
v1.1 ... 10
v1.0 ... 10

Contacting 11
SITE LICENSE AGREEMENT .. 11
Technical Support.. 19

Quick Start 21
Quick Introduction to Configuration of SLA OS... 21

Quick Configuration... 21
Quick Introduction to Multi Motor Programming with SLA OS 24

Quick Position Data Creation.. 24
Quick Programming .. 27
Quick Results .. 30

Quick Introduction to Smart Motor Programming with SLA OS 32
Quick Programming .. 32
Quick Results .. 36

Quick Introduction to Binary Coded Decimal Programming with SLA OS 37
Quick Position Data Creation.. 37
Quick Programming .. 39
Quick Results .. 43

Introduction 45
Installing SLA OS Software ... 45
Configuration ... 46
Manual Operations .. 47
Creating Position Data... 48
Introduction to eCylinder/eRotary.. 52

Programming 57
Creating Multi Motor Programs (MMP).. 57
Creating Smart Motor Programs (SMP) .. 59
Creating Binary Coded Decimal Programs (BCD) .. 66

i

Table Of Contents

External Systems 75
Examples 79

Sample programs .. 79

Reference 81
MMP Commands Reference ... 81

MMP Commands in Related Groups .. 81
MMP Commands in Alphabetic Order .. 83
MMP Commands .. 84

SLA Commands Reference... 104
SLA Commands in Related Groups.. 104
SLA Commands in Alphabetic Order .. 106
SLA Commands.. 107

EXCEL Commands Reference.. 127
EXCEL Commands in Related Groups... 127
EXCEL Commands in Alphabetic Order ... 127
EXCEL Commands... 127

VISION Commands Reference ... 129
VISION Commands in Related Groups .. 129
VISION Commands in Alphabetic Order... 129
VISION Commands... 129

HMI Commands Reference ... 133
HMI Commands in Related Groups .. 133
HMI Commands in Alphabetic Order .. 133
HMI Commands .. 134

SERIAL Commands Reference... 137
SERIAL Commands in Related Groups.. 137
SERIAL Commands in Alphabetic Order.. 137
SERIAL Commands.. 137

SLA SMP Commands Reference.. 140
SMP Commands in Related Groups... 140
SMP Commands in Alphabetic Order ... 145
SMP Commands... 147

eCylinder/eRotary SMP Commands Reference.. 179
SMP Commands in Related Groups... 179
SMP Commands in Alphabetic Order ... 179
SMP Commands... 179

ii

Smart Linear Actuator
Operating Software 1.9 User Manual

SLA Operating Software (SLA OS) is used to program DE-STA-CO Automation's Smart Linear
Actuator electric slides. The SLA OS User manual explains the many features available in the
software..

© 2004-2006 DE-STA-CO Automation. All rights reserved.

1

New features summary
Following is a summary of the main features in each of the release.

v1.9

• New Features
o SLA OS is now compatible with the upcoming line of eCylinder (EC65, EC90) and

eRotary (ER21, ER75) product line. As an end user, all the investment in learning the
SLA OS software is preserved by the backward compatible changes. The virtual mode is
also upgraded to gracefully handle the new product line.

o When starting SLA OS application, there is an additional drop down menu for choosing
an application profile. Current choices are

1. Complete SLA OS (default) - this will allow to leverage full functionality of the
software.

2. eCylinder/eRotary Programming - this will result in a simple user interface
geared towards BCD programming for eCylinder/eRotary.

o Improved BCD programming has following new features
1. A new BCD wizard provides choice of either creating a BCD program from

scratch or from the existing collection of points.
2. Adding, updating and deleting positions within the BCD programming screen

itself
3. Now it is possible to assign different speed, acceleration for each BCD point.

Note that speed and acceleration are specified as percentage of maximum limits.
4. Newly introduced Relative position mode (in addition to the present Absolute

position mode) can be assigned to a point which results in incremental motion.
This could be used in an application where PLC signal can move a slide/rotary
by fixed distance/angle respectively.

o Dynamic path creation capability for MMP programs can now also be used for creating
curvilinear (arc) paths by assigning the dynamic path the pathType value of 2 (1 = linear
(default), 2 = curvilinear) and adding 'start', 'center', 'end' and 'direction' points.

• SLA Commands
o Included Calibration as a value that can be obtained using sla.MotorStatus command.

This can be used to determine if a particular motor has been calibrated (homed) and to
alert operator before proceeding to calibrate it.

• Miscellaneous
o A new submenu from Diagnostics icon in toolbar allows releasing serial connection

without closing the whole application. When needed, the connection can be reestablished
by running the Diagnostics again.

o Teach pendant has been enhanced to change the speed and acceleration as percentage of
maximum values for each motor.

o Dataset window now has status bar that shows useful information about datasets, paths
and points. It also shows elapsed time in seconds for running a path to help in optimizing
cycle times.

o Unit Conversion calculator is enhanced to work with new eRotary motors for converting
angles in degrees to Smart Motor Units.

o Single axis representation is improved in Dataset window which also allows creating
BCD points for one axis system by clicking on the graphical area.

v1.8

• New Features
o Added Wizards for automatically creating MMP programs for common tasks such as

palletizing and glue dispensing. In the subsequent releases more wizards will be added to

3

Smart Linear Actuator User’s Guide

simplify all aspects of programming including template support where special templates
will be created for speeding up everyday common programming tasks.

o Enhanced Dataset Path creation by adding functionality to copy, paste and insert a point
anywhere within a path. Apart from the existing 'create point' and 'update point' modes,
now there is an additional 'insert point' which can be enabled by pressing CTRL and
clicking on any point. In the insert mode, a new point can be inserted anywhere within a
path by selecting a point and creating a point in usual manner. To copy and paste a point,
use CTRL+C (for copy) and CTRL+V (for paste) commands.

o A new path that starts at the end of another path can be created by selecting the lead path
and creating the new path. This works even when the lead path is an arc. This
functionality is very useful while creating elaborate appended paths (e.g. for dispensing
application).

o New dynamic path creation capability of MMP programs allows constructing user
defined linear paths at runtime. This is useful for creating paths based on user input or
from values stored in external file.

o Extended the arc manipulation CTRL command to adjust the end point of an arc to lie on
the arc. To access this feature, select the end point, press CTRL and click anywhere on
the graphical area. This will modify the end point's values so that it is on the arc now.
This feature is useful for obtaining the start point for the next path in the appended chain
of paths.

o Created SMP debugging capability by having SMP programs use PRINT statements to
print on the motor terminal. These statements can report the existing variable values as
well as text messages for debug help.

o Added capability to interface with DVT Vision System. The data obtained from the
vision system can be used to drive the SLA system.

o SLA OS software now comes bundled with plenty of useful sample programs and their
associated databases to run out of box. These programs (both SMP and MMP) use
recommended programming practices and can be extended to create custom programs.
The programs are located in the samples directory under the installation directory.

o Created additional log levels to use from within MMP programs. Currently supported log
levels are
� 0 (new) can be used for logging messages which are not saved in the file.
� 1 can be used for logging information messages. These messages are also saved

in the log file.
� 2 can be used for logging warning messages. These messages are also saved in

the log file.
� 3 can be used for logging error messages. These messages are also saved in the

log file.
� 4 (new) can be used for logging messages which are displayed in a separate pop

up window with bigger fonts. This is useful for monitoring the program's
progress. These messages are not saved in the log file.

• EXCEL Commands
o Added new excel commands (excel.ReadFile, excel.GetValue) for reading Microsoft

Excel files without a need for installing Excel on the computer. This allows additional
means to control the behavior of a program depending on the data present in the file.
Note that the first line of the file is ignored and the second row is treated as row one.
Also, if a column has mixed types of data (e.g. numbers and text), this method of retrieval
can return Null for the minority types of data and some registry settings need to be
modified to get the correct results. Please see
http://support.microsoft.com/kb/194124/EN-US/ or contact technical support for
additional help.

• SLA Commands
o Enhanced sla.WaitForStop command to raise an error if motor is stopped due to fault

(e.g. limit switch or position error).

4

New features

o Included MaxCurrent and MaxPositionError as two additional values that can be obtained
and set using sla.MotorStatus command. This allows to control maximum torque that can
be exerted and adjust the threshold when position error is flagged.

• VISION Commands
o Added new vision commands (vision.connectDVT, vision.ProcessDVT,

vision.GetDVTValue) for interfacing with DVT vision system. This extends the existing
support for Cognex to include two of the most widely used vision systems in the industry.

• Miscellaneous
o Enhanced SMP Development Environment with ability to open multiple SMP programs

simultaneously, multi level undo/redo facility, enhanced syntax coloring, selecting fonts
and additional toolbar buttons.

o Ability to select COM1 to COM9 ports for SLA OS operation. Earlier it was restricted up
to COM4. This feature is useful when using USB to Serial converter which can create
higher numbered serial ports.

o Enhanced calculator with ability to copy result and handle invalid inputs.

v1.7.1

• New Features
o Added an ability to create arc paths from the start, end and any other point on the arc.

This augments the existing capability where start, end and the center points of an arc are
required. This is very useful when the exact dimensions are not available. In this case, the
three points can be updated by moving the slides to the three points of an actual part. To
access this feature, first update the start and the end points. Then to calculate the center
point automatically, press CTRL and any point on the arc. This will create the desired
center point.

v1.7

• New Features
o Added Virtual Motors Simulation (VMS) functionality to run the software in simulation

mode.
� Very useful when the actual hardware is not yet available or for training without

the need of actual hardware.
� Up to six virtual motors can be selected and configured individually.
� Visual and audio simulation along with the tracing functionality of dataset

window can be used to visualize the physical system behavior.
� Configure simple rules for input switches depending on the state of an output

switch to simulate physical IO behavior.
� Input switches can be operated from the Motor Monitor screen.
� Currently the MMP programming mode is fully supported. The SMP and BCD

programs can be written and debugged but can't be run at this time.
o Added time conversion in the Unit Conversion Calculator. This can be used to get time in

SMU units when writing SMP program.
• SERIAL Commands

o Added new serial commands (serial.OpenPort, serial.WritePort, serial.ReadPort and
serial.ClosePort) for reading and writing from a MMP program using serial.* convention.

• Miscellaneous
o Added validation for point, path and dataset naming convention. Now it checks that these

names don't contain space or illegal characters.
o Improved documentation with Macromedia Flash tutorials. Now it is even easier to learn

the software by following the video tutorials accessible from the help menu.

5

Smart Linear Actuator User’s Guide

v1.6

• New Features
o Added Position Data Import for AutoCad Exchange Format (DXF), Microsoft Excel

(XLS) and Comma Separated Values (CSV) files.
o Added capability to interface with Cognex Vision System. The data obtained from the

vision system can be used to drive the SLA system.
o Added Unit Conversion Calculator for converting position, velocity and acceleration to

various units. The calculator takes into account the pitch and encoder counts of a motor
for conversion.

o BCD programming now supports in place editing, on-the-fly program generation and
synchronization with the dataset view.

• SLA Commands
o Modified sla.WaitForStop with timeOut parameter which allows to wait only for

specified time period.
• Vision Commands

o Introduced vision.ConnectCognex, vision.ProcessCognex and vision.GetCognexValue
commands to support Cognex vision interface

• Miscellaneous
o BCD programming can now contain 100 positions from earlier 50 positions limitation.
o Added scroll bar for Teach Pendant to accommodate SLA configurations involving high

number of motors.
o Added client specific software customization feature to provide enhanced level of

technical service.
o Enhanced syntax coloring of SMP programs, added Save As functionality to save SMP

program with different name, added functionality to detect changed SMP program and
confirm saving when exiting.

o 'Auto Brake' button is automatically disabled when servo is on.

v1.5.1

• SLA Commands
o Added the command sla.RunDiagnostics to reset the serial connection in the event of

power cycle e.g. when an E-Stop button is pressed.
o Added decelerate option to sla.WaitForStop and sla.StopMotion commands to control the

velocity profile while stopping. Now by default, it decelerates to stop in contrast to
sudden stop earlier.

• HMI Commands
o Added decelerate option to hmi.WaitForStop command to control the velocity profile

while stopping. Now by default, it decelerates to stop in contrast to sudden stop earlier.
• Miscellaneous

o Now teach pendant takes into account the selected speed and acceleration when desired
position is entered into the position textbox and return key is pressed. Earlier it used the
default velocity and acceleration.

v1.5

• SLA Commands
o Added sla.StopMotion, sla.DoPositionMove, sla.DoVelocityMove commands
o Added additional status values (Bd, Bs, Bu) that can be accessed using sla.MotorStatus
o Modified sla.WaitForStop command. The modified command has the capability to block

the execution of program till an input signal attains the specified value or the motion
stops, whichever occurs first. The modified command is backward compatible.

6

New features

o Modified sla.CheckSwitch command. The modified command can return the status of
either input or output switch. Earlier it used to return the status of only input switch. The
modified command is backward compatible.

o Command sla.WaitForSwitch now returns True/False depending on success or failure.
o Removed redundant sla.MoveToPath command. The same operation can be carried out

using sla.BeginningPathPoint which returns the first point on the path and then using
DoLine to move to the point.

Removal of the command can result in backward incompatibility. See the following
example about suggestions for fixing the code to work with this and all future releases.

 Replace

 sla.MoveToPath(MyDataset.path1, 100, 1000)

 with

 sla.DoLine(sla.BeginningPathPoint(MyDataset.path1),
100, 1000)

o Removed redundant sla.ShiftAxisToPoint command.The same operation can be carried
out using sla.ShiftAxis command (see below).

Removal of the command can result in backward incompatibility. See the following
example about suggestions for fixing the code to work with this and all future releases.

 Replace

 sla.ShiftAxisToPoint(MyDataset.point1,
isChainedVariable)

 with

 Dim pointVariable as Point

 Set pointVariable = MyDataset.point1

 sla.ShiftAxis(pointVariable.x,
pointVariable.y, pointVariable.z, isChainedVariable)

7

Smart Linear Actuator User’s Guide

o Removed sla.DoMotion command. Replaced with the new sla.DoVelocityMove
command.

Removal of the command can result in backward incompatibility. See the following
example about suggestions for fixing the code to work with this and all future releases.

 Replace

 sla.DoMotion(motorIndex, direction, speed,
acceleration, monitorMotorIndex, monitorInputSwitch ,
monitorInputSwitchStatus)

 with

 sla.DoVelocityMove(motorIndex, direction,
speed, acceleration)

 sla.WaitForStop(motorIndex,
monitorMotorIndex, monitorInputSwitch ,
monitorInputSwitchStatus)

• HMI Commands
o Added hmi.WaitForStop command which is similar to sla.WaitForStop command.

• Miscellaneous
o Help can be accessed from Help menu or clicking 'F1' function key.
o MMP Development environment saves and restores the selected fonts.
o Fixed bug regarding zero grid dimensions which freezes the SLA OS software.
o Provided new button on the monitor screen to turn on/off all Outputs for testing purpose.

v1.4.1

• SLA Commands
o Extended the sla.SetServoOff command to optionally turn off automatic brakes. This can

be used to easily move the slides around with hands. Since turning the servo off and the
brakes at the same time can lead to undesired motions (e.g. z slide falling down due to
gravity), removed the option of applying the command to all motors. Now the command
has to be applied to individual motor explicitly (see below).

Removal of the option to apply the command to all motors (indicated by argument '0')
can result in backward incompatibility. See the following example about suggestions for
fixing the code to work with this and all future releases.

8

New features

 Replace

 sla.setServoOff(0)

 with

 sla.setServoOff(1)

 sla.setServoOff(2)

 sla.setServoOff(3)

o Extended the sla.Calibrate command to optionally provide user specified speed and
acceleration to control the speed of homing.

• HMI Commands
o New command hmi.SaveIOs available through sla commands to make it possible to

programmatically persist the Modbus data
o New command hmi.WriteRegister and hmi.ReadRegister deals with individual 16 bits

Modbus registers.

v1.4

• SLA Commands
o Added a new command sla.WaitForStop to wait for all motors to stop moving.
o Enhanced sla.ElapsedTime function to also allow resetting the timer
o Enhanced sla.DoMotion command to specify an input to monitor and stop the motion

when the input has the specified state (1/0).
• DB Status - Since the new version allows any database to be used (chosen during the login), it is

necessary to provide the information about which database is currently in used. Created and added
the DB icon in the status bar for this purpose.

• Bug fixes
o When an invalid IO is specified, now it gives more meaningful message instead of 'No

response received' earlier
o Introducing Point class in the Basic environment even if no points are defined.
o Fixed validation error for RotateAxis which can specify rotation around z-axis even when

z-axis is not present.

v1.3

• Multiple Configuration
o Ability to switch between different databases from Login window
o Ability to configure batchDatabase from Configuration window
o Ability to save current database under different name from Logout window

• Status Variables - The new command in SLA Basic environment makes available all the status
variables for each of the motor. This gives flexibility in programming as well as monitoring.

• Persistent Modbus Data - Additional database table holds the value of Modbus data. This value is
restored when the application restarts. The database migration feature is updated to update any old
database to automatically detect and update with the new table structure.

9

Smart Linear Actuator User’s Guide

v1.2

• Enhanced Programming Environment - The enhanced environment for writing Basic programs
offers most of the standard text editor (Save As, Find/Replace, ...) functionalities.

• Uninstall - Now it is possible to uninstall the application through Start menu. Earlier user had to
go to Control Panel and Add/Remove programs to remove the application.

• Better File Management - Enhanced install detects the existing database files and doesn't overwrite
them. Similarly, enhanced uninstall doesn't uninstall the important files.

v1.1

• HMI - Incorporating industry standard Modbus protocol in the application to offer HMI device
compatibility for industrial applications.

v1.0

• Multitasking - This allows multiple *.mmp (multi motor programs) to run at the same time. The
immediate use of this feature is to use the supplied 'startup.mmp' program to stop/start any mmp
program by switching on corresponding input.

• Three dimensional motion - The linear as well as curvilinear motion is extended to three
dimensions. What this allows is to draw arcs/circles on any planes in space. Also, the addition of a
'pitch/rotations' allow a helical movement in any direction in space.

• Appending arbitrary paths - This allows making a very complex path made up of various linear
and curvilinear motions and running the slides with a smooth motion along the complete path.

• Path calculation caching - Since calculating the points to send to motor for a given path is one of
the most CPU intensive task, a new caching mechanism is integrated. This allows to reuse the
calculations repeatedly, thus speeding up the program tremendously.

• Multi-pitch capability - The software can handle any combination of SLA slides (e.g. X-axis SLA-
150, Y-axis SLA-120 and Z-axis SLA-90). This allows for much more flexible configuration. The
software compensates for the difference in pitch ratios among the slides.

• State management - When a program crashes or computer loses power, we still need to maintain
state across these events. The new saveState/getState/removeState sla functions provide this
capability. The common use is to 'start from where left off' functionality. e.g. in a N1 X N2 grid if
we are drilling/inking and program crashes when it has completed nth grid point, next time when
the program starts, we would want to repeat the process for the first n points and start at n+1 th
point. The state management makes this possible. Also, note that it has been enhanced so that it
works across threads which allows multiple threads to communicate among themselves.

• Pre-defined MMP function library - There is a provision of providing pre-written functions
(slaFunctions.mmp) which can be used in any mmp program. We also provide another file
userFunctions.mmp which can be customized for the end user for use in their applications.

• Database migration - The database that holds the SLA data has a certain structure when the
application is shipped. However, with the new database migration capability, when new features
are added or there is a need to change the existing database structure (schema), it can be handled
without having customer intervention.

• Profiling for time - With the introduction of StartTimer and ElapsedTimer functions in sla, it is
very simple to keep track of more than one timers to do profiling (e.g. cycle time) study.

• Robust BCD auto generated programs - The new template for generating BCD programs has been
greatly improved to make it a 'one-click-process' to create a BCD program.

10

Contacting
SITE LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: This DE-STA-CO Automation End-User License
Agreement ("EULA") is a legal agreement between you (either an individual or a single entity)
and DE-STA-CO Automation ("DE-STA-CO Automation") for the DE-STA-CO Automation
Licensed Product identified as DE-STA-CO Automation SLA operating software ("LICENSED
PRODUCT"). By installing, copying, or otherwise using the LICENSED PRODUCT, you agree to
be bound by the terms of this EULA. If you do not agree to the terms of this EULA, you may not
use the LICENSED PRODUCT.

In consideration of the mutual covenants that follow, Licensor and Licensee agree:

1. Definitions

a. Licensed Product. The term “Licensed Product” means the DE-STA-CO
Automation SLA operating software.

b. Authorized User(s). The term “Authorized User(s)” means any current employee
of Licensee.

c. Representative Authorized User(’s), The term “Representative Authorized
User(s)” means any Authorized User under the terms of this Agreement who secures a
copy of the Licensed Product for use on a DE-STA-CO Automation SLA modular
automation system. A Representative Authorized User is charged with the custody,
supervision, control, and security of the copy of the Licensed Product which he or she
receives from the Licensee. For purposes of this Agreement, a person acting as a
Representative Authorized User is acting on behalf of Licensee.

d. Local Network System(s). The term “Local Network System(s)” means multiple,
interactive user terminals connected to a single-processing or a multi-processing
microcomputing unit whereby the user of an interactive terminal does not have physical
access to the physical storage medium containing a copy of the Licensed Product.

11

Smart Linear Actuator User’s Guide

e. Free-Standing Workstation(s). The term “Free-Standing Workstation(s)” means
a self-contained microcomputing unit which is owned or leased by Licensee for the
exclusive use of Licensee’s employees and for which Licensee has provided a copy of the
Licensed Product.

2. License

In accordance with the terms of this Agreement, Licensor grants to Licensee, and
Licensee accepts from Licensor, a nonexclusive and nontransferable license to use the
Licensed Product on the Local Network Systems and Free-Standing Workstations owned,
leased, or operated by Licensee for use only by Authorized Users. The use of the
Licensed Product and related documentation is expressly limited to use on the DE-STA-
CO Automation SLA modular automation system.

3. Ownership of Licensed Product

Licensor represents that it is, and on the date of delivery of Licensed Product will
be, the sole owner and copyright holder of Licensed Product; that it has, and on the date
of the delivery of the Licensed Product will have, the full right and authority to grant this
license and that neither this license nor performance under this Agreement does or shall
conflict with any other agreement or obligation to which Licensor is a party or by which
it is bound.

4. Title to and Rights in Licensed Product

a. Proprietary Rights. The Licensed Product and updates of the Licensed Product
are proprietary to Licensor, and title to them remains in Licensor. All applicable common
law and statutory rights in the Licensed Product and updates of the Licensed Product,
including, but not limited to, rights in confidential and trade secret material, source code,
object code, trademarks, service marks, patents, and copyrights, shall be and will remain
the property of Licensor. Licensee shall have no right, title, or interest in such proprietary
rights.

b. Restrictions. Licensee is prohibited from distributing, transferring possession of,
or otherwise making available copies of the Licensed Product to any person not
employed at the licensee’s place of business. Licensee and Representative Authorized

12

Contacting

Users are prohibited from making any modifications, adaptations, enhancements,
changes, or derivative works of the Licensed Product, and Licensee shall advise all
Authorized Users that they are prohibited from making any modifications, adaptations,
enhancements, changes, or derivative works of the Licensed Product.

5. Confidentiality

a. No Decompilation or Disassembly. Licensor represents and Licensee hereby
acknowledges that the object code constituting the Licensed Product and updates of the
Licensed Product which is embodied on magnetic storage media contains confidential
and trade secret material which is not readily susceptible to reverse compilation or
reverse assembly. Licensee and Representative Authorized Users shall not attempt to
decompile or disassemble the object code of the Licensed Product or updates. Licensee
further agrees that it will use its best efforts to prevent decompilation and disassembly of
the object code of the Licensed Product and updates by Authorized Users by advising
Authorized Users of the provisions of this Subsection and by immediately reporting to
Licensor and halting any reverse compilation or reverse assembly of the Licensed
Product or updates by any Authorized User of which Licensee has actual knowledge.

6. Technical Support

Licensor, at its sole expense, shall provide Licensee with support of a technical
nature with respect to all aspects of the Licensed Product and updates to the Licensed
Product including their installation and use.

7. User Manuals

a. Access to Manuals. Licensee acknowledges that the user manual is an integral
part of the software, which makes up the Licensed Product and is necessary for the proper
use and application of the Licensed Product and updates to the Licensed Product.

b. No Right to Copy Manual. The license granted in Section 2 of this Agreement
does not include any right to copy the user manual for use with the Licensed Product.
Licensee acknowledges and agrees to use its best efforts to advise Authorized Users that
any duplication of the manual is unauthorized by this Agreement, is prohibited by law,

13

Smart Linear Actuator User’s Guide

and constitutes an infringement of Licensor’s copyright. Violation of any provision in
this Section shall be the basis for the immediate termination of this Agreement.

8. Limited Warranty and Disclaimer of Liability

a. Results Not Warranted. Licensor has no control over the conditions under which
Licensee and Authorized Users use the Licensed Product and updates and does not and
cannot warrant the results obtained by such use.

b. Limited Warranty. In addition to warranting that it has the right to grant the
license contained in this Agreement, Licensor warrants that the magnetic media on which
the Licensed Product or an update is recorded and any user manual leased under the
terms of this Agreement are free from defects in material and workmanship under normal
use. Licensor further warrants that the Licensed Product and any update of the Licensed
Product will perform substantially in accordance with the specifications found in the user
manual in effect as of the date of this Agreement. The warranties contained in this
Section are made for a period of ninety (90) days from the date on which the Licensed
Product or update is delivered to Licensee or from the date on which a user manual is
leased by Licensee.

c. Limitations on Warranty. Licensor does not warrant that the functions contained
in the Licensed Product or in any update will meet the requirements of Licensee or
Authorized Users or that the operation of the Licensed Product or update will be
uninterrupted or error free. The warranty does not cover any copy of the Licensed
Product or update or any user manual, which has been altered or changed in any way by
Licensee or any Authorized User. Licensor is not responsible for problems caused by
changes in or modifications to the operating characteristics of any computer hardware or
operating system for which the Licensed Product or an update is procured, nor is
Licensor responsible for problems which occur as a result of the use of the Licensed
Product in conjunction with software or with hardware which is incompatible with the
operating system for which the Licensed Product is being procured.

d. Exclusion of Implied Warranties. ANY IMPLIED WARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED.

a. Exclusion of Any Other Warranties. The warranties contained in Subsection b of
this Section are made in lieu of all other express warranties, whether oral or written. Only

14

Contacting

an authorized officer of Licensor may make modifications to this warranty or additional
warranties binding on Licensor, and such modifications or additional warranties must be
in writing. Accordingly, additional statements such as those made in advertising or
presentations, whether oral or written, do not constitute warranties by Licensor and
should not be relied upon as such.

11. Limitation of Remedies

a. Replacement Sole Remedy. Subject to Section 22 of this Agreement, Licensor’s
entire liability and Licensee’s exclusive remedy shall be the replacement by Licensor of
any magnetic media or user manual not meeting Licensor’s “Limited Warranty.” In
addition, while in no sense warranting that the operation of the Licensed Product will be
uninterrupted or error free, Licensor will, as provided in Section 7 of this Agreement,
assist the Licensee in the installation and maintenance of the Licensed Product and will
supply the Key Person with corrected versions of the Licensed Product through updates.

b. Damages Limitation. LICENSOR DISCLAIMS ANY AND ALL LIABILITY
FOR SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF
PROFIT) ARISING OUT OF THIS AGREEMENT OR WITH RESPECT TO THE
INSTALLATION, USE, OPERATION, OR SUPPORT OF THE LICENSED
PRODUCT OR ANY UPDATE OF THE LICENSED PRODUCT EVEN IF LICENSOR
HAS BEEN APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.

c. Limitation of Any Recover,’ Subject to Section 22 of this Agreement, Licensee
specifically agrees that any liability on the part of Licensor arising from breach of
warranty, breach of contract negligence, strict liability in tort, or any other legal theory
shall not exceed amounts paid by Licensee in fees for the use and maintenance of the
Licensed Product.

12. Relationship of the Parties

For purposes of this Agreement, Licensee is not an agent of Licensor, and Licensee
has no express or implied authority to act on behalf of or make any representations
whatsoever on behalf of Licensor. Licensor has no right to control any activities of
Licensee outside the terms of this Agreement.

15

Smart Linear Actuator User’s Guide

13. Updates

Updates include enhancements and corrections of and modifications and additions
to the Licensed Product. Updates also include later versions of the Licensed Product. Use
of updates with or in place of the Licensed Product shall be fully governed by and subject
to the terms of this Agreement relating to the reproduction and use of the Licensed
Product. Any portion of the Licensed Product replaced by an update shall be destroyed.

14. Supplements

From time to time, Licensor will make available computer programs which are
compatible with the

Licensed Product and which supplement the Licensed Product. SUPPLEMENTS ARE
NOT

LICENSED UNDER THE TERMS OF THIS AGREEMENT.

15. Indemnity

Licensor, at its own expense, will defend any action brought against Licensee to the
extent that it is based or, a claim that the Licensed Product or any update of the Licensed
Product used within the scope of this Agreement infringes any patent, copyright, license,
trade secret, or other proprietary right, provided that Licensor is immediately notified in
writing of such a claim. Licensor shall have the right to control the defense of all such
claims, lawsuits, and other proceedings. In no event shall Licensee settle any such claim,
lawsuit, or proceeding without Licensor’s prior written approval. Licensor shall have no
liability for any claim under this Section if a claim for patent, copyright, license, or trade
secret infringement is based on the use of a superseded or altered version of the Licensed
Product if such infringement would have been avoided by use of the latest unaltered
version of the Licensed Product available as an update.

16. Arbitration

Except for the right of either party to apply to a court of competent jurisdiction for a
temporary restraining order, a preliminary injunction, or other equitable relief to preserve

16

Contacting

the status quo or prevent irreparable harm, any controversy or claim arising out of or
relating to this Agreement or to its breach shall be settled by an arbitration administered
by the American Arbitration Association and pursuant to its rules, and judgment upon the
award rendered in such arbitration may be entered in any court of competent jurisdiction.

17. General

a. Complete Agreement; Amendment. Each party acknowledges that it has read this
Agreement and any exhibit, understands them, and agrees to be bound by their terms, and
further agrees that they are the complete and exclusive statement of the agreement
between the parties which supersedes and merges all prior proposals, understandings, and
all other agreements, oral and written, between the parties relating to this Agreement.
This Agreement may not be modified or altered except by written instrument duly
executed by both parties.

b. Purchase Order. In the event of any conflict between the terms and conditions of
this Agreement and the terms and conditions of any purchase order, the terms and
conditions of this Agreement shall control.

c. Governing Laws. The laws of the State of Texas shall govern this Agreement and
performance under this Agreement

d. Limitations Period. No action, regardless of form, arising out of this Agreement
may be brought by Licensee more than two (2) years after the cause of action has arisen.

e. Severability. If any provision of this Agreement is invalid under any applicable
statute or rule of law, it is to that extent to be deemed omitted. The remainder of the
Agreement shall be valid and enforceable to the maximum extent possible.

f. Assignment. Licensee may not assign or sublicense, without the prior written
consent of Licensor, its rights, duties, or obligations under this Agreement to any person
or entity, in whole or in part.

17

Smart Linear Actuator User’s Guide

g. Assumption by Successor to Licensor. In the event of the acquisition of
Licensor’s business, software, or both by a third party, Licensor agrees to make such an
acquisition subject to the assumption of the terms of this Agreement by the third party.

h Cessation of Business. Should Licensor cease doing business for reasons other
than the acquisition of the business or software by a third party, the license granted in
Section 2 of this Agreement shall become a perpetual, nonexclusive, nontransferable
license. The provisions of Sections 5 and 6 of this Agreement shall apply fully to such a
license.

j. Waiver. The waiver or failure of Licensor to exercise in any respect any right
provided for in this Agreement shall not be deemed a waiver of any further right under
this Agreement.

k. Headings. The headings appearing at the beginning of the several sections
contained in this Agreement have been inserted for identification and reference purposes
only and shall not be used in the construction and interpretation of this Agreement.

18

Contacting

Technical Support
Please note that currently supported platforms for the software are Windows NT, Windows 2000,
and Windows XP. Other older platforms (Windows 98, Windows 95) might work but are not
supported.

The latest release is available from: http://www.robohandsla.com/software/setup.zip. To obtain an
earlier release, please contact us.

If you need any technical support for installation or using the SLA OS, please contact DE-STA-
CO Automation at the following information.

DE-STA-CO Automation
3305 Wiley Post
Carrollton, TX 75006
tech-sla@robohand.com
http://www.robohandsla.com/
(800)-259-9890 / 972-726-7300

19

Quick Start
Quick Introduction to Configuration of SLA OS

This section is designed for a quick introduction to the SLA OS by showing how easy it is to write
useful programs to get the results you want. It shows examples of three different types of
programs:

1. Multi Motor Program (MMP) - can handle most applications with its inbuilt library of highly
sophisticated commands. It runs from the (optional) SLA Control Unit.

2. Smart Motor Program (SMP) - runs in the motors (doesn't require SLA Control Unit) and can
handle many of the less complex tasks.

3. Binary Coded Decimal Program (BCD) - type of simplified SMP program where PLC based
controls can be used to send BCD numbers to the motors to go to pre programmed locations.

Before a program can be written the SLA OS software must be configured to match the settings of
the slides configuration.

Quick Configuration
Once the SLA OS software is installed (it already comes pre-installed if you also ordered the SLA
Control Unit), login with the user and password both as "sla" (in lowercase).

Click on the Configuration icon in the toolbar to open the following configuration screen.

21

Smart Linear Actuator User’s Guide

Select the correct slide models and stroke lengths for each of the motors by clicking on the
appropriate drop down combobox and saving the settings.

22

Quick Start

Once the system is configured, the following three sections show how to quickly write programs
using the three mentioned program types.

1. Multi Motor Program (MMP) Quick Start
2. Smart Motor Program (SMP) Quick Start
3. Binary Coded Decimal Program (BCD) Quick Start

Later in the manual many of the advanced features will be discussed in more details to fully
harness the power of SLA OS.

23

Smart Linear Actuator User’s Guide

Quick Introduction to Multi Motor Programming
with SLA OS

This section is designed for a quick introduction to Multi Motor Programming with SLA OS by
writing a simple Multi Motor Program (MMP) for dispensing along a square shape of 60 mm side
with rounded corners of radius 5 mm. The three main steps are

1. Position Data Creation
2. Programming
3. Results

Quick Position Data Creation
Click on the Datasets icon in the toolbar to open 'Create Datasets' screen.

24

Quick Start

Click on the 'Create Path' icon in the screen to create a new path for dispensing.

25

Smart Linear Actuator User’s Guide

With the mouse, create the desired path as shown below. The six point square includes starting
from the center of a side and selecting all four corners and back to the original center point to
create six points as shown below.

26

Quick Start

Quick Programming
Open a 'New Program...' dialog by clicking on File menu or pressing Ctrl+N (Control and N
together). By default, the MMP program is selected. Type the name of the new program in
'Program Name' textbox and click 'Create Program' button.

27

Smart Linear Actuator User’s Guide

This will bring up the MMP Programming Environment with the template of the program already
created as shown below.

28

Quick Start

Just after the 'init' call to calibrate the system, add the following line to make the slide follow the
square path (Path1) just created. Note that as soon as you start typing 'sla.' the autocomplete
feature of the environment displays all the possible completion. At this point it is a matter of
selecting from the options and filling in the arguments. The following command will make slide
follow the Path1 with 10 mm/sec. speed and acceleration of 500 mm/sec.^2. Note, how easy it is
to add the rounding of 5 mm for the corners.

 sla.DoPath(Path1, 10, 500, 5)

29

Smart Linear Actuator User’s Guide

Quick Results
Select the 'Monitor All' and 'Visual Trace' checkboxes on the main window to follow the
movement of the slides on the Dataset screen. Click the Start button on the MMP Programming
Environment to run the program to see the following successful result.

30

Quick Start

31

Smart Linear Actuator User’s Guide

Quick Introduction to Smart Motor Programming
with SLA OS

This section is designed for a quick introduction to Smart Motor Programming with SLA OS by
writing a simple Smart Motor Program (SMP) for creating a constant velocity motion of for
MotorX in positive direction. The two main steps are

1. Programming
2. Results

Quick Programming
Open a 'New Program...' dialog by clicking on File menu or pressing Ctrl+N (Control and N
together). Select the SMP program type and enter the name of the new program in 'Program Name'
textbox. Note that by default, MotorX is selected. Click 'Create Program' button.

This will bring up the SMP Programming Environment with the template of the program already
created as shown below which includes the instructions for downloading tuning parameters and
homing the motor at the start of the program.

32

Quick Start

Between the section indicated for user code, add the following lines to make the slide move in the
positive X direction with 1000000 Smart Motor Unit speed and 100 Smart Motor Unit
acceleration. The command MV defines the velocity mode for motion and the command G starts
the motion.

33

Smart Linear Actuator User’s Guide

 MV

 A = 100

 V = 1000000

 G

34

Quick Start

35

Smart Linear Actuator User’s Guide

Quick Results
Before you can run the program, first build the program by clicking on the 'Build the Smart Motor
Program' button in the toolbar. You should see the following confirmation to make sure that the
program compiles successfully.

Next step is to download the compiled program to motor. Click on the 'Transfer Program from PC
to Motor' button in the toolbar. You should see the following confirmation dialog box.

Now, to run the program, click on the 'Run' button. This will result in the downloaded programs
running in the destination MotorX. By default, the generated programs run the homing routine
initially. This behavior can be changed by modifying the program and rebuilding and downloading
again.

The slide will move in the positive X direction and come to stop at the limit switch at the end of
the slide.

36

Quick Start

Quick Introduction to Binary Coded Decimal
Programming with SLA OS

This section is designed for a quick introduction to Binary Coded Decimal Programming with
SLA OS by writing a simple Binary Coded Decimal Program (BCD) for generating series of
positions to move The three main steps are

1. Position Data Creation
2. Programming
3. Results

Quick Position Data Creation
Click on the Datasets icon in the toolbar to open 'Create Datasets' screen.

37

Smart Linear Actuator User’s Guide

With the mouse, click on the screen to create the positions corresponding to the BCD input. With
each click, a new point is added to the Points node as shown below. Since this is just for the test
purpose, the exact locations of the points don't matter.

38

Quick Start

Quick Programming
Open a 'New Program...' dialog by clicking on File menu or pressing Ctrl+N (Control and N
together). Select the BCD program type and enter the name of the new program in 'Program Name'
textbox. Click 'Next' button.

39

Smart Linear Actuator User’s Guide

In the task selection window, you can select different ways to create a BCD program. Select the
second option for creating a BCD program from existing data.

40

Quick Start

This will bring up a window with the position data tree that was earlier created in the Datasets
window. Select the collection of points (either a path or points) to create BCD program from as
shown below.

41

Smart Linear Actuator User’s Guide

This will bring up the BCD Programming Environment showing the points and the corresponding
BCD values.

Click on the 'Code View' tab to see the SLA OS generated code which also includes code for
homing to match the existing configuration information. Note that the displayed code depends on
the type of slide connected to the axis. The following display corresponds to SLA.

42

Quick Start

Quick Results
Since all the code is already generated by the SLA OS software, there is no additional
programming involved. Before you can run the program, compile and download the programs to
all the motors by clicking on the 'Build and Download' button on the top. You should see the
following confirmation to make sure that everything is successful.

Now, to run the program, click on the 'Run' button. This will result in the downloaded programs
running in all the motors. By default, the generated programs run the homing routine initially. This
behavior can be changed using the SMP Programming Environment since BCD programs are
basically SLA OS generated SMP programs.

Once the programs are running, the motion can be achieved by feeding the correct input values
using either a test BCD input box or PLC.

43

Introduction
Installing SLA OS Software

To install the software:

1. Close all programs including any copy of SLA OS Software.
2. If you have a previous copy of the software installed, uninstall it before installing the new version.

(note: Older versions (before v1.2) require backing up of database located in "C:\Program
Files\Robohand\SLA\data\data.mdb" in a safe location.) To uninstall the previous version, open
Control Panel, click on 'Add or Remove Programs', click on 'SLA Operating Software' and follow
the instructions for removing the software.

3. Double click on the installation setup.exe file. The installation wizard will lead through the steps
for installation.

4. If you had to backup the database in earlier step, copy the database back in the original location.
5. Once the software is installed, it will create shortcuts on the Desktop as well as create additional

menu items in the program menu accessible from standard Windows Start menu.

45

Smart Linear Actuator User’s Guide

Configuration
Once the software is installed, the next step is to configure it with the specific information about
the system e.g. what kind of slides are attached, what are the stroke-lengths of each, the I/O
information etc.

Basic Configuration

Following demo shows the basic configuration of the software.

I/O Configuration

Following demo shows how to configure I/O onboard the motors as well as on the SLA External
I/O Module.

46

Introduction

Manual Operations
The SLA OS comes with powerful manual operations capability that can be used to test the slides,
test the created position and path data as well as interact with the slides directly through motor
terminal. Following demo shows how to use Teach Pendant, how to do homing of the motors and
how to run diagnostics to automatically fix problems with slides where possible. Note that the
slides must be homed before the valid position data can be taught. This demo shows Teach
pendant operations, homing motors and running diagnostics.

47

Smart Linear Actuator User’s Guide

Creating Position Data
Almost all programs require a well defined position data information. Using SLA OS's visual
representation of XY plane, it is very convenient to create the data in XY plane.
The main Dataset screen can be accessed by clicking on 'Datasets' icon on the toolbar.

The above picture shows the window after moving the mouse cursor on the graphical XY plane
and right clicking on the region. Note the coordinates of a point are displayed while the cursor is
on the region. The options available to configure the graphical area in the menu includes

48

Introduction

1. Grid Allows to turn grid on/off. Also the grid spacing can be controlled from here.

2. Snap to Grid Once selected, the mouse pointer will snap to the grid intersections. This is very

useful when positions to be created are known to be in the multiples of grid spacing.
3. Switch X-Y Axes Depending on the configuration of X-Y slides, the alternate orientation (Y axis

horizontal and X axis vertical) can be useful in visualizing the points getting created.
4. Clear All This will clean the graphical screen of any drawings.

Creating Position Data

This demo shows how to create position data using graphical area for both linear and curvilinear
paths and independent positions.

There are two types of position data that can be created using the window.

1. Points These are independent collection of points, each of them defining a location in space. They
can be created using 'Create Point' button on the toolbar.

2. Paths These are ordered collection of points defining a trajectory in space. There are two types of
path, both of which can be defined using 'Create Path' dropdown combobox. By default, clicking
on 'Create Path' will create Linear path.

1. Linear - This is made up of connected straight lines.
2. Arc - This defines a section of circle.

This position data can be contained in a dataset created using 'Create Dataset' button. It is highly
recommended that each distinct project (where data is not shared) has its own dataset. This makes
it easier to organize as well as access the data during programming. Once a dataset is created, the
points or the paths contained within can be accessed following <datasetName>.<pointName> for a
point and <datasetName>.<pathName> for a path e.g. MyDataset.path1 or MyDataset.point1. The
system already comes with 'GLOBAL' dataset for sharing position data that could have cross
project usage (e.g. origin). The data contained with 'GLOBAL' dataset can be accessed with or
without prefixing the name 'GLOBAL' before it. e.g. GLOBAL.<pointName> or <pointName>
both will work for the points contained in the 'GLOBAL' dataset.

Creating Points

There are more than one way to create/update an independent point for a selected dataset. To
create a point, select the 'Points' under the desired dataset. With the mouse, click on the desired
point in the graphical area. Since the Z axis value is obtained from the current Z location, it might
be beneficial to move to the desired Z location before creating points. Another way to create a
point is to manually move the slides to the desired location and the clicking on 'Create Point'
button on the toolbar. To make it easier to move slides by hand, be sure to turn off servo and
disengage the automatic brake by clicking on 'Motor Servo' and 'Automatic Brake ON' buttons for
the corresponding motors in the teach pendant tab on the main screen. This is very useful in
creating points out of distinct locations in the work area. If any of the values require further

49

Smart Linear Actuator User’s Guide

refinement, they can be edited by selecting and pressing the 'ESC' button or by clicking twice on
the desired coordinate value.
This demo shows how to create position data using current motor positions and updating an
existing position with the current motor position.

Creating Paths

Paths can also be created in multiple way. Before any points can be added to a path, create the
correct type of path (Linear or Arc) using the 'Create Path' button. For Linear paths, select the path
and create sequence of points following the same sequence used for creating individual points.
Notice that as more points are added, the path is drawn on the screen. For Arc paths, select each of
the special points that get created and update them either through direct editing or clicking on
'Update Point' button or clicking with mouse in the graphical area.

Typical screen might look like below after creating position data for multiple projects. The
checkboxes next to each of the node in the 'Position Data' tree can be used to draw the child nodes
in the graphical area. e.g. By selecting the 'Position Data' checkbox, all the data contained in all
datasets will be drawn on the screen. This is very useful in visualizing the various points location
and path trajectories.

50

Introduction

Advanced ways to create paths

Import Dataset

This demo shows how to create a path by importing AutoCAD generated DXF file to create a
path. Other supported formats are XLS (Microsoft Excel file e.g. data.xls) and CSV (comma
separated values, a plain text file e.g. data.txt). Note that in the XLS and CSV formats, the first
row is discarded and must not contain the needed data.

Teach Dataset

This demo shows how to create a path by turning the servo and brake off and manually moving
the motors around to teach a path.

51

Smart Linear Actuator User’s Guide

Introduction to eCylinder/eRotary
eCylinder models (EC65 and EC90) are new additions to the growing electric product lines from
DE-STA-CO Automation. It augments the existing SLA90, SLA120 and SLA150 products to
provide flexible deployment options. Following are the major differences and notable similarities
between the two types.

• eCylinder/eRotary are backward compatible with the Smart Motor Programming (SMP) command
set which is used to drive the motors from the host computer.

• Currently only the BCD programs can be downloaded to the eCylinder/eRotary. Programming
them for the BCD movements is same as that for SLA.

• eCylinder/eRotary can be operated using MMP programs. However, since they can't participate in
a coordinated motion, the sla.DoLine and sla.DoPath commands are ignored by it. These motion
commands can still be used to move SLA motors in a mixed deployment stage (e.g. X and Y are
SLA slides, while Z is an eCylinder/eRotary). To move an eCylinder/eRotary from a MMP
program, either of sla.DoPositionMove, sla.DoRelativeMove or sla.DoVelocityMove commands
can be used.

• There are ten onboard outputs in eCylinder compare to six for SLA.
• eCylinder/eRotary have absolute encoders. However, to take into account the homing offsets, it is

still necessary to carry out homing which adjusts the origin according to the offset values.

Configuration Changes

The main changes to the SLA OS program are in the configuration screen as shown below.

52

Introduction

Two new eCylinder models (EC65 and EC90) and two new eRotary modesl (ER21 and ER75) are
available for selection.

53

Smart Linear Actuator User’s Guide

Each of the eCylinder model comes with multiple pitch selection. Also note the increased number
of outputs to 10.

54

Introduction

Motor monitor window shows correct number of IO states depending on the selected slide.

eRotary Motion Specification

While SLA/eCylinder has been well understood in terms of what direction and by how much the
movement would occur, eRotary (which has no negative/positive limits) needs clarity due to its
circular nature. Following results are meant to assist in understanding the eRotary motion. All
angles are specified in degrees.

Following is the result of various absolute positions starting from the current locatin at origin (RP
= 0)

• P=360, motor will move 360 in clockwise direction. [RP returns 0]
• P=-360, motor will move 360 in anticlockwise direction. [RP returns 0]
• P=90, motor will move 90 in clockwise direction. [RP returns 90]
• P=-270, motor will move 270 in anticlockwise direction. [RP returns 90]
• P=450, motor will move 450 in clockwise direction. [RP returns 90]
• P=-450, motor will move 450 in anticlockwise direction. [RP returns 270]

Following is the result of various absolute positions starting from the current locatin at 90 (RP =
90)

• P=360, motor will move 270 in clockwise direction. [RP returns 0]
• P=-360, motor will move 450 in anticlockwise direction. [RP returns 0]
• P=90, motor will move 0 in clockwise direction. [RP returns 90]
• P=-270, motor will move 360 in anticlockwise direction. [RP returns 90]
• P=450, motor will move 360 in clockwise direction. [RP returns 90]

55

Smart Linear Actuator User’s Guide

• P=-450, motor will move 540 in anticlockwise direction. [RP returns 270]

56

Programming
Creating Multi Motor Programs (MMP)

Multi Motor Programs (MMP) are the easiest and most flexible of all the programs available for
SLA OS. Since these programs run on the PC Controller, they can create coordinated motions (by
coordinating each of the slides), communicate with external IOs, interface with other
USB/Ethernet devices and offer a very powerful development environment for creating and
debugging programs in easy to use Basic language.
Following demo shows main steps for a simple MMP program.

To create a MMP program, open a 'New Program...' dialog by clicking on File menu or pressing
Ctrl+N (Control and N together). By default, the MMP program is selected. Type the name of the
new program in 'Program Name' textbox and click 'Create Program' button. This will bring up the
following window for developing MMP program with the template of the program already created
as shown below.

Type following text just after the init statement.

 sla.LogMessage "My First Program"

57

Smart Linear Actuator User’s Guide

Save the program by selecting 'Save' from the File menu or clicking the save icon in the toolbar.
For running the program, click on the run icon or press 'F5'. (Caution: since by default the
program will home the motors, make sure that there is no body near the slides or no obstacles are
placed which can prevent homing. If desired, homing can be disabled by commenting out the
'sla.Calibrate(0)' statement in the init subroutine.). This should create a log entry in the 'Logs' tab
of the main screen as well as writing in the logs.txt file located in the logs directory where the
software is installed. All the commands that interface with the SLA OS start with 'sla.' prefix. As
soon as 'sla.' is typed in the editor, the intellisense facility shows all the commands that available.
The intellisense facility can also be activated by hitting 'CTRL-SPACE'.

Select the command that is appropriate for the use. The arguments to the command are also
displayed as soon as a SPACE or '(' is typed.

This makes it very convenient to write a MMP program.

58

Programming

Creating Smart Motor Programs (SMP)
Smart Motor Programs (SMP) are normally created when there is no need for coordinated motion
and the (optional) SLA Control Unit is not present. These programs can be created by using any
supported Windows platform and uploaded directly into the motors. When the power is turned on,
these programs run independently of each other in the individual motors. However, using shared
IO signals some parts of these otherwise independent motion can be synchronized by waiting on
the common signal. Since there is no real time coordination among the motors for a well defined
trajectory, the resulting movement is sometimes referred as synchronized motion. The SMP
programs are developed using its own development environment which allows for syntax coloring,
syntax checking, compiling and easy uploading and downloading of the programs to a motor.
These programs are written using simple Smart Motor Language.
Following demo shows main steps for a simple SMP program.

To create a SMP program, open a 'New Program...' dialog by clicking on File menu or pressing
Ctrl+N (Control and N together). Select the SMP program type and enter the name of the new
program in 'Program Name' textbox. Note that by default, MotorX is selected. If you wish to write
a SMP program for different motor, change the selection. Click 'Create Program' button.

This will bring up the following window for developing SMP program with the template of the
program already created as shown below.

59

Smart Linear Actuator User’s Guide

Study the generated template carefully, as it exhibits many of the common programming
techniques used in SMP programming including using variables, issuing SMP commands, using
flow control techniques, writing subroutines, invoking subroutines, conditional expressions etc.
By default, the generated template contains the code for downloading the tuning values and
invoking homing subroutine at the power startup. This behavior can be changed by directly

60

Programming

modifying the program in the editor. Enter the following program in the area indicated for user
code.

 MX

 a = 1

 WHILE a < 10

 a = a + 1

 D = 1000

 V = 100000

 A = 100

 G

 TWAIT

 LOOP

61

Smart Linear Actuator User’s Guide

While at a first glance, it looks like a valid program for performing relative movement for 10
iterations, let's try to build the program to see if all the syntax is correct. Click on the 'Build the
Smart Motor Program' icon in the toolbar. Since the first command MX doesn't exist, you will get
an error (automatically highlighted in red) and the cursor is moved to the error line as shown
below.

62

Programming

To correct the error, simply change the command from MX to MP for position mode of motion.

63

Smart Linear Actuator User’s Guide

Try building the program again. This time it should build correctly and a dialog informing
successful build is displayed.

64

Programming

To run the program, upload in the motor by clicking on 'Transfer Program from PC to Motor' on
the toolbar and clicking the run button. This will result in ten short movements in the positive
direction for MotorX.

The SLA OS gives you complete control over the write, build and test process and you can iterate
the process as many times as required to make sure that the program meets all your requirements.
Once satisfied with the program, the PC is no longer required. When the power is turned ON again
for the motor, the program will automatically start running from the beginning (by default
homing).

65

Smart Linear Actuator User’s Guide

Creating Binary Coded Decimal Programs (BCD)
Binary Coded Decimal Programs (BCD) are nothing but simplified SMP programs. Since PLC
based controls are very effective in coordinating various devices and generally used to move the
slides to preprogrammed locations depending on the combination of BCD bits, this category of
SMP programs have been separated out for special treatment. For BCD programs, all of the
programming code is auto generated based on the selection of the locations. This includes tuning
parameters download and homing subroutine. Since the generated code is a valid SMP program, it
can be opened and edited in the much more flexible SMP programming environment. This is
sometimes necessary when more custom actions are required to achieve the goal.
Following demo shows main steps for a simple BCD program.

Before creating a BCD program, create few points as shown in the BCD Quick Start earlier. Now,
to create a BCD program, open a 'New Program...' dialog by clicking on File menu or pressing
Ctrl+N (Control and N together). Select the BCD program type and enter the name of the new
program in 'Program Name' textbox. Click 'Next' button.

In the task selection window, you can select different ways to create a BCD program. Select the
second option for creating a BCD program from existing data.

66

Programming

This will bring up a window with the position data tree that was earlier created in the Datasets
window. Select the collection of points (either a path or points) to create BCD program from as
shown below.

67

Smart Linear Actuator User’s Guide

This opens the BCD Programming Environment showing the points and the corresponding BCD
values.

Note the automatically assigned BCD values (starting from 0) depending on the order of the points
in the selected collection of points. While this is the default behavior, it can be modified by using
the SMP programming environment. The BCD programming environment has evolved into a

68

Programming

powerful IDE to create PLC driven onboard programs without writing single line of code. From
this screen you can take following actions which modifies the actual generated code.

• Create an additional point in the BCD sequence.

• Delete an existing point the BCD sequence.

69

Smart Linear Actuator User’s Guide

• Adjust speed, acceleration and mode (whether absolute or relative) for all points during motion

• Adjust speed, acceleration and mode (whether absolute or relative) for each individual point

separately during motion

70

Programming

• Test any of the point by selecting and clicking on 'Run Selected' button

• Edit name, position values, speed, acceleration or mode directly in the table

71

Smart Linear Actuator User’s Guide

• Download generated programs to all motors with single click

• Run all programs on all motors with single click

72

Programming

• Stop all programs on all motors with single click

While all the above actions are possible in the table view, code is transparently kept in synch with
the table view. To view the code, you can switch to the 'Code View' as shown below. Note that the
name of the corresponding generated SMP file is displayed on the title bar. Since one BCD
program corresponds to as many SMP programs as the number of motors present, you can view
each of those programs by selecting the appropriate motor from the dropdown box. Another thing
to note is that the code displayed is not editable and the only way to modify the default generated
behavior is using an SMP editor. Note that the code depends on the type of slide connected to the
axis. The following display corresponds to an eCylinder.

To run the program, simply build and download the generated programs to all the motors by
clicking on the 'Download Program' button in the toolbar. Once all the programs have been
downloaded, click the run button to run all programs.

73

External Systems
SLA OS can connect to the external vision systems to access the image analysis data. This data
can be used in a MMP program to drive the SLA system.

Following Vision systems are supported in the SLA software.

• Cognex Machine Vision
• DVT Machine Vision (coming soon)

Using SLA OS's vision interface, it is trivial to connect to the supported vision systems. The three
main steps involved are:

1. Connect - First step is to connect to the vision system. The underlying software takes care of all
the native connection details.

2. Process - Once connected to the vision system, the image acquisition and processing by the vision
system can be triggered programmatically, for example, depending on the selected input signal.

3. Access - The results of the processing of the machine vision image by the camera can be accessed
using simple access command.

Following image shows a Cognex device after acquiring the image and processing to show the
result value of 23.783 in A2 cell.

75

Smart Linear Actuator User’s Guide

Following simple program shows the three steps mentioned earlier to access the result value. The
log shows the successful reading of the value.

76

External Systems

Once the value is read, subsequent steps in the program can depend on the analysis of the results.

For complete descriptions of the vision commands, please refer to the Vision Commands
Reference.

77

Examples
Sample programs

Following is a list of programs that are packaged with the SLA OS software and can be found in
the samples folder under the main installation location (usually C:\Program Files\Robohand\SLA).
Most of these programs also have the corresponding database files which contains the data about
points and paths used in the programs. To run a program

1. Copy the program file in the programs folder under the main installation location.
2. Copy the corresponding database file in the data folder under the main installation location.
3. Start the SLA OS program and select the correct database from the dropdown list of databases.
4. Select the corresponding program from the File/Open menu.
5. If it is SMP or BCD program, build, download and run the program. MMP program can be run

from the host controller itself.

MMP programs

• MMP-Prog1-HOMING [source]
This is a basic example of homing triggered by an user input.

• MMP-Prog2-MessageWindow [source]
This program demonstrates blocking message window with acknowledgement.

• MMP-Prog3-MovingPointToPoint [source]
This program demonstrates simple point to point coordinated motion.

• MMP-Prog4-LinearPath [source]
This program demonstrates basic linear path coordinated motion with various parameters.

• MMP-Prog5-CurvilinearPath [source]
This program demonstrates basic curvilinear path coordinated motion with various parameters.

• MMP-Prog6-AppendedPath [source]
This program combines various paths into a single path for creating complex composite path.

• MMP-Prog7-ControllingIOs [source]
This program demonstrates various commands for controlling IOs.

• MMP-Prog8-CreatingNewPoint [source]
This program creates a new point dynamically based on user inputs.

• MMP-AdvancedProg1-ControllingTorque [source]
This is an advance example for reducing maximum current output to the motor which in turn
limits the maximum torque output by the motor.

• MMP-AdvancedProg2-Autostart [source1, source2]
This is an example of multi tasking feature with one program monitoring the health of the system
and launching the main application program when system is ready.

• MMP-AdvancedProg3-OffsetPattern [source]
This is an example of utilizing advanced transformation commands to offset a path along various
axes.

• MMP-AdvancedProg4-RotatePattern [source]
This is an example of utilizing advanced transformation commands to rotate a path along an axis
at various angles.

79

Smart Linear Actuator User’s Guide

SMP programs

• SMP-Prog1-HOMING [source1, source2]
This SMP program shows how to control IOs and wait for user input before proceeding with
homing.

• SMP-Prog2-JOGGING [source]
This program shows how to create Teach Pendant like functionality using a toggle switch and a
push button.

• SMP-Prog3-PICK-N-PLACE [source1, source2]
The two independent SMP programs use common IOs to synchronize their movements.

80

Reference
MMP Commands Reference

Following are the MMP Commands which can be used in a Multi Motor Program (MMP) along
with SLA and HMI Commands. They are arranged in related groups and in alphabetic order for
easy access.

MMP Commands in Related Groups
The MMP Commands are categorized in each group depending on their functionalities.

• MMP Declaration Commands

These commands are used to declare the variables, functions and subroutines in a program.

o Const Definition
o Dim Definition
o Function Definition
o Main Sub
o Option Definition
o ReDim Instruction
o Sub Definition

• MMP Assignment Commands

These commands are used to assign values or objects to the variables.

o Set Instruction

• MMP Flow Control Commands

Using flow control commands, the path of execution through a program can be controlled by
checking for values of variables or IO switches. They are also used to perform iterations using
loop constructs.

o Do Statement
o End Instruction
o Exit Instruction
o For Statement
o For Each Statement
o Goto Instruction
o If Statement
o Select Case Statement
o While Statement

81

Smart Linear Actuator User’s Guide

• MMP Error Handling Commands

For a robust program, error handling can be achieved by using the On Error command.

o Err Object
o On Error Instruction

• MMP Conversion Commands

These commands can be used to convert one datatype to another.

o Array Function
o CStr Function

• MMP Variable Info Commands

These commands give additional information about variables.

o LBound Function
o UBound Function

• MMP Math Commands

These commands can be used for mathematical calculations.

o Abs Function

• MMP String Commands

These commands relate to the text string handling capability of a program.

o Str$ Function

• MMP User Input Commands

Using these commands, a dialog box can be generated to display or obtain information.

o InputBox$ Function

82

Reference

o MsgBox Instruction/Function

• MMP Miscellaneous Commands

These are miscellaneous commands useful for programming.

o DoEvents Instruction
o Wait Instruction

• MMP Operator Commands

These are commands related to operation between variables.

o Operators

MMP Commands in Alphabetic Order

1. Abs Function
2. Array Function
3. Const Definition
4. CStr Function
5. Dim Definition
6. Do Statement
7. DoEvents Instruction
8. End Instruction
9. Err Object
10. Exit Instruction
11. For Statement
12. For Each Statement
13. Function Definition
14. Goto Instruction
15. If Statement
16. InputBox$ Function
17. LBound Function
18. Main Sub
19. MsgBox Instruction/Function
20. On Error Instruction
21. Operators
22. Option Definition
23. ReDim Instruction
24. Select Case Statement
25. Set Instruction
26. Str$ Function
27. Sub Definition
28. UBound Function

83

Smart Linear Actuator User’s Guide

29. Wait Instruction
30. While Statement

MMP Commands

1. Abs Function

Summary Return the absolute value. Parameter Description Num Return the absolute value of
this numeric value. If this value is Null then Null is returned.

Declaration Abs(Num)

Example

Sub Main

 Debug.Print Abs(9) ' 9

 Debug.Print Abs(0) ' 0

 Debug.Print Abs(-9) ' 9

End Sub

Group MMP Math Commands

2. Array Function

Summary Return a variant value array containing the exprs.

Declaration Array([expr[, ...]])

Example

Sub Main

 X = Array(0,1,4,9)

 Debug.Print X(2) ' 4

End Sub

Group MMP Conversion Commands

84

Reference

3. Const Definition

Summary Define name as the value of expr. The expr may be refer other constants or built-in
functions. If the type of the constants is not specified, the type of expr is used. Constants defined
outside a Sub, Function or Property block are available in the entire macro/module. Private is
assumed if neither Private or Public is specified.

Declaration [| Private | Public] _ Const name[type] [As Type] = expr[, ...]

Example

Sub Main

 Const Pi = 4*Atn(1), e = Exp(1)

 Debug.Print Pi ' 3.14159265358979

 Debug.Print e ' 2.71828182845905

End Sub

Group MMP Declaration Commands

4. CStr Function

Summary Convert to a string. Parameter Description Num|$ Convert a number or string value to a
string value.

Declaration CStr(Num|$)

Example

Sub Main

 Debug.Print CStr(Sqr(2)) '"1.4142135623731"

End Sub

Date Data Typef

Group: Data Type

Description:

A 64 bit real value. The whole part represents the date, while
the fractional part is the time of day. (December 30, 1899 = 0.)
Use #date# as a literal date value in an expression.

Group MMP Conversion Commands

85

Smart Linear Actuator User’s Guide

5. Dim Definition

Summary Dimension var array(s) using the dims to establish the minimum and maximum index
value for each dimension. If the dims are omitted then a scalar (single value) variable is defined. A
dynamic array is declared using () without any dims. It must be ReDimensioned before it can be
used.

Declaration Dim [WithEvents] name[type][([dim[, ...]])][As [New] type][, ...]

Example

Sub DoIt(Size)

Dim C0,C1(),C2(2,3)

ReDim C1(Size) ' dynamic array

C0 = 1

C1(0) = 2

C2(0,0) = 3

Debug.Print C0;C1(0);C2(0,0) ' 1 2 3

End Sub

Sub Main

DoIt 1

End Sub

Group MMP Declaration Commands

6. Do Statement

Summary

Declaration Do statements Loop -or- Do {Until|While} condexpr statements Loop -or- Do
statements Loop {Until|While} condexpr

Example

Sub Main

 I = 2

 Do

 I = I*2

86

Reference

 Loop Until I > 10

 Debug.Print I ' 16

End Sub

Group MMP Flow ControForm 1: Do statements forever. The loop can be exited by using Exit or
Goto. Commands

7. DoEvents Instruction

Summary This instruction allows other applications to process events.

Declaration DoEvents

Example

Sub Main

 DoEvents ' let other apps work

End Sub

Double Data Type

Group: Data Type

Description:

A 64 bit real value.

Group MMP Miscellaneous Commands

8. End Instruction

Summary The end instruction causes the macro to terminate immediately. If the macro was run
by another macro using the MacroRun instruction then that macro continues on the instruction
following the MacroRun.

Declaration End

Example

Sub DoSub

 L$ = UCase$(InputBox$("Enter End:"))

 If L$ = "END" Then End

 Debug.Print "End was not entered."

87

Smart Linear Actuator User’s Guide

End Sub

Sub Main

 Debug.Print "Before DoSub"

 DoSub

 Debug.Print "After DoSub"

End Sub

Group MMP Flow Control Commands

9. Err Object

Summary Set Err to zero to clear the last error event. Err in an expression returns the last error
code. Add vbObjectError to your error number in ActiveX Automation objects. Use Err.Raise or
Error to trigger an error event. Err[.Number] This is the error code for the last error event. Set it to
zero (or use Err.Clear) to clear the last error condition. Use Error or Err.Raise to trigger an error
event. This is the default property. Err.Description This string is the description of the last error
event. Err.Source This string is the error source file name of the last error event. Err.HelpFile This
string is the help file name of the last error event. Err.HelpContext This number is the help context
id of the last error event. Err.Clear Clear the last error event.

Declaration Err

Example

Sub Main

 On Error GoTo Problem

 Err = 1 ' set to error #1 (handler not triggered)

 Exit Sub

 Problem: ' error handler

 Error Err ' halt macro with message

End Sub

Group MMP Error Handling Commands

10. Exit Instruction

Summary The exit instruction causes the macro to continue with out doing some or all of the
remaining instructions. Exit Description All Exit all macros. Do Exit the Do loop. For Exit the For
of For Each loop.

88

Reference

Declaration Exit {All|Do|For|Function|Property|Sub|While}

Example

Sub Main

 L$ = InputBox$("Enter Do, For, While, Sub or All:")

 Debug.Print "Before DoSub"

 DoSub UCase$(L$)

 Debug.Print "After DoSub"

End Sub

Sub DoSub(L$)

 Do

 If L$ = "DO" Then Exit Do

 I = I+1

 Loop While I < 10

 If I = 0 Then Debug.Print "Do was entered"

 For I = 1 To 10

 If L$ = "FOR" Then Exit For

 Next I

 If I = 1 Then Debug.Print "For was entered"

 I = 10

 While I > 0

 If L$ = "WHILE" Then Exit While

 I = I-1

 Wend

 If I = 10 Then Debug.Print "While was entered"

 If L$ = "SUB" Then Exit Sub

89

Smart Linear Actuator User’s Guide

 Debug.Print "Sub was not entered."

 If L$ = "ALL" Then Exit All

 Debug.Print "All was not entered."

End Sub

Group MMP Flow Control Commands

11. For Statement

Summary Execute statements while Num is in the range First to Last. Parameter Description Num
This is the iteration variable. First Set Num to this value initially. Last Continue looping while
Num is in the range. See Step below. Step If this numeric value is greater than zero then the for
loop continues as long as Num is less than or equal to Last. If this numeric value is less than zero
then the for loop continues as long as Num is greater than or equal to Last. If this is omitted then
one is used.

Declaration For Num = First To Last [Step Inc] statements Next [Num]

Example

Sub Main

 For I = 1 To 2000 Step 100

 Debug.Print I;I+I;I*I

 Next I

End Sub

Group MMP Flow Control Commands

12. For Each Statement

Summary Execute statements for each item in items. Parameter Description var This is the
iteration variable. items This is the collection of items to be done.

Declaration For Each var In items statements Next [var]

Example

Sub Main

 Dim Document As Object

 For Each Document In App.Documents

 Debug.Print Document.Title

90

Reference

 Next Document

End Sub

Group MMP Flow Control Commands

13. Function Definition

Summary User defined function. The function defines a set of statements to be executed when it
is called. The values of the calling arglist are assigned to the params. Assigning to name[type] sets
the value of the function result. Function defaults to Public if Private, Public or Friend are not is
specified.

Declaration [| Private | Public | Friend] _ [Default] _ Function name[type][([param[, ...]])] [As
type[()]] statements End Function

Example

Function Power(X,Y)

 P = 1

 For I = 1 To Y

 P = P*X

 Next I

 Power = P

End Function

Sub Main

 Debug.Print Power(2,8) ' 256

End Sub

Group MMP Declaration Commands

14. Goto Instruction

Summary Go to the label and continue execution from there. Only labels in the current user
defined procedure are accessible.

Declaration GoTo label

Example

91

Smart Linear Actuator User’s Guide

Sub Main

 X = 2

Loop:

 X = X*X

 If X < 100 Then GoTo Loop

 Debug.Print X ' 256

End Sub

Group MMP Flow Control Commands

15. If Statement

Summary

Declaration If condexpr Then [instruction] [Else instruction] -or- If condexpr Then statements
[ElseIf condexpr Then statements]... [Else statements] End If -or- If TypeOf objexpr Is objtype
Then ...

Example

Sub Main

 S = InputBox("Enter hello, goodbye, dinner or sleep:")

 S = UCase(S)

 If S = "HELLO" Then Debug.Print "come in"

 If S = "GOODBYE" Then Debug.Print "see you later"

 If S = "DINNER" Then

 Debug.Print "Please come in."

 Debug.Print "Dinner will be ready soon."

 ElseIf S = "SLEEP" Then

 Debug.Print "Sorry."

 Debug.Print "We are full for the night"

 End If

End Sub

Group MMP Flow ControForm 1: Single line if statement. Execute the instruction following the
Then if condexpr is True. Otherwise, execute the instruction following the Else. The Else portion
is optional. Commands

92

Reference

16. InputBox$ Function

Summary Display an input box where the user can enter a line of text. Pressing the OK button
returns the string entered. Pressing the Cancel button returns a null string. Parameter Description
Prompt$ Use this string value as the prompt in the input box. Title$ Use this string value as the
title of the input box. If this is omitted then the input box does not have a title. Default$ Use this
string value as the initial value in the input box. If this is omitted then the initial value is blank.
XPos When the dialog is put up the left edge will be at this screen position. If this is omitted then
the dialog will be centered. YPos When the dialog is put up the top edge will be at this screen
position. If this is omitted then the dialog will be centered.

Declaration InputBox[$](Prompt$[, Title$][, Default$][, XPos, YPos])

Example

Sub Main

 L$ = InputBox$("Enter some text:", _

 "Input Box Example","asdf")

 Debug.Print L$

End Sub

Integer Data Type

Group: Data Type

Description:

A 16 bit integer value.

Group MMP User Input Commands

17. LBound Function

Summary Return the lowest index. Parameter Description arrayvar Return the lowest index for
this array variable. dimension Return the lowest index for this dimension of arrayvar. If this is
omitted then return the lowest index for the first dimension.

Declaration LBound(arrayvar[, dimension])

Example

Sub Main

 Dim A(-1 To 3,2 To 6)

 Debug.Print LBound(A) '-1

 Debug.Print LBound(A,1) '-1

93

Smart Linear Actuator User’s Guide

 Debug.Print LBound(A,2) ' 2

End Sub

Group MMP Variable Info Commands

18. Main Sub

Summary Form 1: Each macro must define Sub Main. A macro is a "program". Running a macro
starts the Sub Main and continues to execute until the subroutine finishes.
Form 2: A code module may define a Private Sub Main. This Sub Main is the code module
initialization subroutine. If Main is not defined then no special initialization occurs.

Declaration Sub Main() ... End Sub -or- Private Sub Main() ... End Sub

Example

Sub Main

 MsgBox "Please press OK button"

 If MsgBox("Please press OK button",vbOkCancel) = vbOK Then

 Debug.Print "OK was pressed"

 Else

 Debug.Print "Cancel was pressed"

 End If

End Sub

Group MMP Declaration Commands

19. MsgBox Instruction/Function

Summary Show a message box titled Title$. Type controls what the message box looks like
(choose one value from each category). Use MsgBox() if you need to know what button was
pressed. The result indicates which button was pressed. Result Value Button Pressed vbOK 1 OK
button vbCancel 2 Cancel button vbAbort 3 Abort button vbRetry 4 Retry button vbIgnore 5
Ignore button vbYes 6 Yes button vbNo 7 No button Parameter Description Message$ This string
value is the text that is shown in the message box. Type This numeric value controls the type of
message box. Choose one value from each of the following tables. Title$ This string value is the
title of the message box. Button Value Effect vbOkOnly 0 OK button vbOkCancel 1 OK and
Cancel buttons vbAbortRetryIgnore 2 Abort, Retry, Ignore buttons vbYesNoCancel 3 Yes, No,
Cancel buttons vbYesNo 4 Yes and No buttons vbRetryCancel 5 Retry and Cancel buttons Icon
Value Effect 0 No icon vbCritical 16 Stop icon vbQuestion 32 Question icon vbExclamation 48
Attention icon vbInformation 64 Information icon Default Value Effect vbDefaultButton1 0 First
button vbDefaultButton2 256 Second button vbDefaultButton3 512 Third button Mode Value
Effect vbApplicationModal 0 Application modal vbSystemModal 4096 System modal
vbMsgBoxSetForeground &h10000 System modal

94

Reference

Declaration MsgBox Message$[, Type][, Title$] -or- MsgBox(Message$[, Type][, Title$])

Example

Sub Main

MsgBox "Please press OK button"

If MsgBox("Please press OK button",vbOkCancel) = vbOK Then

Debug.Print "OK was pressed"

Else

Debug.Print "Cancel was pressed"

End If

End Sub

Group MMP User Input Commands

20. On Error Instruction

Summary

Declaration On Error GoTo 0 -or- On Error GoTo label -or- On Error Resume Next

Example

Sub Main

 On Error Resume Next

 Err.Raise 1

 Debug.Print "RESUMING, Err=";Err

 On Error GoTo X

 Err.Raise 1

 Exit Sub

X: Debug.Print "Err=";Err

 Err.Clear

 Debug.Print "Err=";Err

 Resume Next

95

Smart Linear Actuator User’s Guide

End Sub

Group MMP Error HandlinForm 1: Disable the error handler (default). Commands

21. Operators

Summary These operators are available for numbers n1 and n2 or strings s1 and s2. If any value
in an expression is Null then the expression's value is Null. The order of operator evaluation is
controlled by operator precedence. Operator Description - n1 Negate n1. n1 ^ n2 Raise n1 to the
power of n2. n1 * n2 Multiply n1 by n2. n1 / n2 Divide n1 by n2. n1 \ n2 Divide the integer value
of n1 by the integer value of n2. n1 Mod n2 Remainder of the integer value of n1 after dividing by
the integer value of n2. n1 + n2 Add n1 to n2. s1 + s2 Concatenate s1 with s2. n1 - n2 Difference
of n1 and n2. s1 & s2 Concatenate s1 with s2. n1 < n2 Return True if n1 is less than n2. n1 <= n2
Return True if n1 is less than or equal to n2. n1 > n2 Return True if n1 is greater than n2. n1 >= n2
Return True if n1 is greater than or equal to n2. n1 = n2 Return True if n1 is equal to n2. n1 <> n2
Return True if n1 is not equal to n2. s1 < s2 Return True if s1 is less than s2. s1 <= s2 Return True
if s1 is less than or equal to s2. s1 > s2 Return True if s1 is greater than s2. s1 >= s2 Return True if
s1 is greater than or equal to s2. s1 = s2 Return True if s1 is equal to s2. s1 <> s2 Return True if s1
is not equal to s2. Not n1 Bitwise invert the integer value of n1. Only Not True is False. n1 And n2
Bitwise and the integer value of n1 with the integer value n2. n1 Or n2 Bitwise or the integer value
of n1 with the integer value n2. n1 Xor n2 Bitwise exclusive-or the integer value of n1 with the
integer value n2. n1 Eqv n2 Bitwise equivalence the integer value of n1 with the integer value n2
(same as Not (n1 Xor n2)). n1 Imp n2 Bitwise implicate the integer value of n1 with the integer
value n2 (same as (Not n1) Or n2).

Declaration ^ Not * / \ Mod + - & < <= > >= = <> Is And Or Xor Eqv Imp

Example

Sub Main

 N1 = 10

 N2 = 3

 S1$ = "asdfg"

 S2$ = "hjkl"

 Debug.Print -N1 '-10

 Debug.Print N1 ^ N2 ' 1000

 Debug.Print Not N1 '-11

 Debug.Print N1 * N2 ' 30

 Debug.Print N1 / N2 ' 3.3333333333333

 Debug.Print N1 \ N2 ' 3

 Debug.Print N1 Mod N2 ' 1

 Debug.Print N1 + N2 ' 13

96

Reference

 Debug.Print S1$ + S2$ '"asdfghjkl"

 Debug.Print N1 - N2 ' 7

 Debug.Print N1 & N2 '"103"

 Debug.Print N1 < N2 'False

 Debug.Print N1 <= N2 'False

 Debug.Print N1 > N2 'True

 Debug.Print N1 >= N2 'True

 Debug.Print N1 = N2 'False

 Debug.Print N1 <> N2 'True

 Debug.Print S1$ < S2$ 'True

 Debug.Print S1$ <= S2$ 'True

 Debug.Print S1$ > S2$ 'False

 Debug.Print S1$ >= S2$ 'False

 Debug.Print S1$ = S2$ 'False

 Debug.Print S1$ <> S2$ 'True

 Debug.Print N1 And N2 ' 2

 Debug.Print N1 Or N2 ' 11

 Debug.Print N1 Xor N2 ' 9

 Debug.Print N1 Eqv N2 ' -10

 Debug.Print N1 Imp N2 ' -9

End Sub

Group MMP Operator Commands

22. Option Definition

Summary Require all variables to be declared prior to use. Variables are declared using Dim,
Private, Public, Static or as a parameter of Sub, Function or Property blocks.

Declaration Option Explicit

Example

Option Explicit

97

Smart Linear Actuator User’s Guide

Sub Main

 Dim A

 A = 1

 B = 2 ' B has not been declared

End Sub

Private Keyword

Group: Declaration

Description:

Private Consts, Declares, Functions, Propertys, Subs and Types
are only available in the current macro/module.

Public Keyword

Group: Declaration

Description:

Public Consts, Declares, Functions, Propertys, Subs and Types in
a module are available in all other macros/modules that access
it.

Group MMP Declaration Commands

23. ReDim Instruction

Summary Redimension a dynamic arrayvar or user defined type array element. Use Preserve to
keep the array values. Otherwise, the array values will all be reset. When using preserve only the
last index of the array may change, but the number of indexes may not. (A one-dimensional array
can't be redimensioned as a two-dimensional array.)

Declaration ReDim [Preserve] name[type][([dim[, ...]])] [As type][, ...] -or- ReDim [Preserve]
usertypevar.elem[type][([dim[, ...]])] [As type][, ...]

Example

Sub Main

 Dim X()

 ReDim X(3)

 Debug.Print UBound(X) ' 3

 ReDim X(200)

98

Reference

 Debug.Print UBound(X) ' 200

End Sub

Group MMP Declaration Commands

24. Select Case Statement

Summary Select the appropriate case by comparing the expr with each of the caseexprs. Select
the Case Else part if no caseexpr matches. (If the Case Else is omitted then skip the entire
Select...End Select block.) caseexpr Description expr Execute if equal. Is < expr Execute if less
than. Is <= expr Execute if less than or equal to. Is > expr Execute if greater than. Is >= expr
Execute if greater than or equal to. Is <> expr Execute if not equal to. expr1 To expr2 Execute if
greater than or equal to expr1 and less than or equal to expr2.

Declaration Select Case expr [Case caseexpr[, ...] statements]... [Case Else statements] End Select

Example

Sub Main

 S = InputBox("Enter hello, goodbye, dinner or sleep:")

 Select Case UCase(S)

 Case "HELLO"

 Debug.Print "come in"

 Case "GOODBYE"

 Debug.Print "see you later"

 Case "DINNER"

 Debug.Print "Please come in."

 Debug.Print "Dinner will be ready soon."

 Case "SLEEP"

 Debug.Print "Sorry."

 Debug.Print "We are full for the night"

 Case Else

 Debug.Print "What?"

 End Select

End Sub

Group MMP Flow Control Commands

99

Smart Linear Actuator User’s Guide

25. Set Instruction

Summary

Declaration Set objvar = objexpr -or- Set objvar = New objtype

Example

Sub Main

 Dim App As Object

 Set App = CreateObject("WinWrap.CppDemoApplication")

 App.Move 20,30 ' move icon to 20,30

 Set App = Nothing

 App.Quit ' run-time error (no object)

End Sub

Group MMP AssignmenForm 1: Set objvar's object reference to the object reference of objexpr.
Commands

26. Str$ Function

Summary Return the string representation of Num. Parameter Description Len Return the string
representation of this numeric value. Positive values begin with a blank. Negative values begin
with a dash '-'.

Declaration Str[$](Num)

Example

Sub Main

 Debug.Print Str$(9*9) ' 81

End Sub

String Data Type

Group: Data Type

Description:

An arbitrary length string value. Some useful string constants
are predefined:

�$(G v�(BbNullChar - same as Chr(0)

�$(G v�(BbCrLf - same as Chr(13) & Chr(10)

100

Reference

�$(G v�(BbCr - same as Chr(13)

�$(G v�(BbLf - same as Chr(10)

�$(G v�(BbBack - same as Chr(8)

�$(G v�(BbFormFeed - same as Chr(12)

�$(G v�(BbTab - same as Chr(9)

�$(G v�(BbVerticalTab - same as Chr(11)

Group MMP String Commands

27. Sub Definition

Summary User defined subroutine. The subroutine defines a set of statements to be executed
when it is called. The values of the calling arglist are assigned to the params. A subroutine does
not return a result. Sub defaults to Public if Private, Public or Friend are not is specified.

Declaration [| Private | Public | Friend] _ Sub name[([param[, ...]])] statements End Sub

Example

Sub IdentityArray(A()) ' A() is an array of numbers

 For I = LBound(A) To UBound(A)

 A(I) = I

 Next I

End Sub

Sub CalcArray(A(),B,C) ' A() is an array of numbers

 For I = LBound(A) To UBound(A)

 A(I) = A(I)*B+C

 Next I

End Sub

Sub ShowArray(A()) ' A() is an array of numbers

 For I = LBound(A) To UBound(A)

 Debug.Print "(";I;")=";A(I)

 Next I

101

Smart Linear Actuator User’s Guide

End Sub

Sub Main

 Dim X(1 To 4)

 IdentityArray X() ' X(1)=1, X(2)=2, X(3)=3, X(4)=4

 CalcArray X(),2,3 ' X(1)=5, X(2)=7, X(3)=9, X(4)=11

 ShowArray X() ' print X(1), X(2), X(3), X(4)

End Sub

Group MMP Declaration Commands

28. UBound Function

Summary Return the highest index. Parameter Description arrayvar Return the highest index for
this array variable. dimension Return the highest index for this dimension of arrayvar. If this is
omitted then return the highest index for the first dimension.

Declaration UBound(arrayvar[, dimension])

Example

Sub Main

 Dim A(3,6)

 Debug.Print UBound(A) ' 3

 Debug.Print UBound(A,1) ' 3

 Debug.Print UBound(A,2) ' 6

End Sub

Group MMP Variable Info Commands

29. Wait Instruction

Summary Wait for Delay seconds.

Declaration Wait Delay

Example

Sub Main

102

Reference

 Wait 5 ' wait for 5 seconds

End Sub

Group MMP Miscellaneous Commands

30. While Statement

Summary Execute statements while condexpr is True.

Declaration While condexpr statements Wend

Example

Sub Main

 I = 2

 While I < 10

 I = I*2

 Wend

 Debug.Print I ' 16

End Sub

Group MMP Flow Control Commands

103

Smart Linear Actuator User’s Guide

SLA Commands Reference
Following are the SLA Commands which can be used in a Multi Motor Program (MMP). They are
arranged in related groups and in alphabetic order for easy access. All the SLA commands can be
used in a MMP program by using "sla." namespace (type CTRL-SPACE after typing sla. in the
MMP Programming environment.)

SLA Commands in Related Groups
The SLA Commands are categorized in each group depending on their functionalities.

• SLA Initialization Commands

These commands are used in setting the initial environment before a program can be successfully
started. They are usually called in the initialization method before any other command is executed.

o Calibrate
o Reset

• SLA Motion Commands

These commands are used to move the slides to specified positions or along the specified paths.
They also contain commands to obtain the useful information regarding positions to move to.

o BeginningPathPoint
o CurrentPoint
o DoLine
o DoPath
o DoPositionMove
o DoRelativeMove
o DoVelocityMove
o MaxOfPath
o MinOfPath
o StopMotion
o WaitForStop

• SLA I/O Commands

These commands are used to control the I/O switches. They can be used to control the integrated
I/O as well as externally supplied unit.

o CheckSwitch
o SetSwitch
o WaitForSwitch

104

Reference

• SLA Motor Commands

These commands directly related to individual motors that drive the slides. They can be used to
obtain useful status information regarding motors.

o MotorStatus
o RunDiagnostics
o SetServoOff

• SLA Multi Tasking Commands

These commands can be used to launch multiple programs simultaneously. These programs run at
the same time and can be very useful where multi-tasking capability is needed.

o StartProgram
o StopProgram

• SLA State Management Commands

These commands can be used to maintain the custom state information in the shared memory
space which can be optionally made persistent (saved on the disk). The shared memory can be
used by multiple tasks to communicate among themselves.

o GetValue
o RemoveValue
o SaveValue

• SLA Axis Transformation Commands

These commands can be used for axis transformations of the existing position data for reusing in
different reference frames. These commands have the chaining capability to combine multiple
transformations for very powerful results.

o AppendPaths
o ApplyTransformation
o ApplyTransformationToDataset
o ApplyTransformationToPath
o ApplyTransformationToPoint
o CurrentCoordinateSystem
o ReflectAxis
o ReversePath
o RotateAxis
o RotateAxisAroundPoint
o ScaleAxis

105

Smart Linear Actuator User’s Guide

o ShiftAxis

• SLA Instrumentation Commands

These commands can be used to measure time profile behavior of a program. They have
capabilities to profile multiple sections of the running program at the same time.

o ElapsedTimer
o StartTimer

• SLA Miscellaneous Commands

These commands provide additional capabilities to augment the existing powerful command set.

o LogMessage
o SendMail

SLA Commands in Alphabetic Order

1. AppendPaths
2. ApplyTransformation
3. ApplyTransformationToDataset
4. ApplyTransformationToPath
5. ApplyTransformationToPoint
6. BeginningPathPoint
7. Calibrate
8. CheckSwitch
9. CurrentCoordinateSystem
10. CurrentPoint
11. DoLine
12. DoPath
13. DoPositionMove
14. DoRelativeMove
15. DoVelocityMove
16. ElapsedTimer
17. GetValue
18. LogMessage
19. MaxOfPath
20. MinOfPath
21. MotorStatus
22. ReflectAxis
23. RemoveValue
24. Reset
25. ReversePath
26. RotateAxis

106

Reference

27. RotateAxisAroundPoint
28. RunDiagnostics
29. SaveValue
30. ScaleAxis
31. SendMail
32. SetServoOff
33. SetSwitch
34. ShiftAxis
35. StartProgram
36. StartTimer
37. StopMotion
38. StopProgram
39. WaitForStop
40. WaitForSwitch

SLA Commands
[note: In the example snippets shown below, MyDataset is the name of a dataset created by user.
path1, path2 etc. are the names of the paths in the MyDataset which can be accessed using the
fully qualified names MyDataset.path1, MyDataset.path2 etc. And, point1, point2 etc. are the
points in the MyDataset which can be accessed using the fully qualified name MyDataset.point1,
MyDataset.point2 etc.]

1. AppendPaths

Summary Append the paths defined in a dataset to create a concatenated path.

Declaration AppendPaths(first As Path, Optional second As Path)

Return Returns appended path.

Description AppendPaths command appends second path to the first path and returns reference to
first path. If optional second path is not specified, it removes all appended paths from the first path
if any. Since it returns the first path, the return value can be used to append subsequent paths as
shown in the following example.

Example Following example appends path2 and path3 to path1 and returns path1. Note that it is
necessary to remove any earlier appended paths from path1 to prevent continuous chaining of the
paths from the earlier calls.

 sla.AppendPaths(MyDataset.path1, Nothing) 'remove
any earlier appended paths

 sla.AppendPaths(sla.AppendPaths(MyDataset.path1,
MyDataset.path2), MyDataset.path3)

 sla.DoPath (MyDataset.path1, 100, 1000, 5)

Group SLA Axis Transformation Commands

107

Smart Linear Actuator User’s Guide

2. ApplyTransformation

Summary Apply transformation to all position data.

Declaration ApplyTransformation ()

Return No return value.

Description ApplyTransformation command applies the transformations to all the datasets. This
could potentially be expensive operation and it is recommended that the more specific commands
ApplyTransformationToPoint, ApplyTransformationToPath or ApplyTransformationToDataset be
used depending on the position data of interest. Until any of the ApplyTransformation* commands
are applied, the transformations do not affect any of the position data.

Example Following example applies transformation to all the paths and points (in all datasets).

 sla.ApplyTransformation()

Group SLA Axis Transformation Commands

3. ApplyTransformationToDataset

Summary Apply transformation to the specified dataset.

Declaration ApplyTransformationToDataset(datasetToTransform As DataSet)

Return No return value.

Description ApplyTransformationToDataset command applies the transformation to all the paths
and points contained in the specified dataset. If only few paths or points out of all the existing
paths and points in a dataset are required to transform, consider using the more specific
ApplyTransformationToPath or ApplyTransformationToPoint commands to reduce the
transformation time.

Example Following example applies transformation to all the paths and points in MyDataset.

 sla.ApplyTransformationToDataset(MyDataset)

Group SLA Axis Transformation Commands

4. ApplyTransformationToPath

Summary Apply transformation to the specified path.

Declaration ApplyTransformationToPath(pathToTransform As Path)

Return No return value.

Description ApplyTransformationToPath command applies the transformation to the specified
path.

108

Reference

Example Following example applies transformation to the specified MyDataset.path1.

 sla.ApplyTransformationToPath(MyDataset.path1)

Group SLA Axis Transformation Commands

5. ApplyTransformationToPoint

Summary Apply transformation to the specified point.

Declaration ApplyTransformationToPoint(pointToTransform As Point)

Return No return value.

Description ApplyTransformationToPoint command applies the transformation to the specified
point.

Example Following example applies transformation to the specified MyDataset.point1.

 sla.ApplyTransformationToPoint(MyDataset.point1)

Group SLA Axis Transformation Commands

6. BeginningPathPoint

Summary Return the beginning point of the specified path.

Declaration BeginningPathPoint(specifiedPath As Path)

Return Returns the beginning point.

Description BeginningPathPoint command returns the first point of a path which can be used to
move to the beginning of the path. If the path is linear then it returns the first point on the path,
while for an arc, it returns the beginning point of the arc. The returned point can be stored in a
Point type variable and can be subsequently used wherever a command takes Point as an argument
e.g. DoLine.

Example Following example returns the first point of MyDataset.path1..

 Dim beginningPoint as Point

 Set beginningPoint =
sla.BeginningPathPoint(MyDataset.path1)

Group SLA Motion Commands

7. Calibrate

Summary Calibrate the motors by homing them in the desired direction.

109

Smart Linear Actuator User’s Guide

Declaration Calibrate(Optional motorIndex As Integer, Optional direction As Integer, Optional
force As Boolean, Optional speed As Double, Optional acceleration As Double)

Return No return value.

Description Calibrate command homes a motor in either direction (-1 for negative direction
towards the motor (default), +1 for positive direction away from the Motor). Once calibrated, a
motor won't home again unless the optional force parameter is specified as True. motorIndex
parameter can be 0 for homing all motors, or a particular motor (1, 2 or 3) can be specified for
homing only one motor. If no values are specified, the command will home all motors in the
negative direction only if they haven't been homed earlier. The optional speed and acceleration
parameters can be used to control the speed of homing.

Example Following example performs homing of motorX in positive direction irrespective of
whether it was done earlier.

 sla.Calibrate(1, 1, True)

Group SLA Initialization Commands

8. CheckSwitch

Summary Check the status of an inputSwitch or outputSwitch.

Declaration CheckSwitch(motorIndex As Integer, switchName As String, Optional isInputSwitch
As Boolean)

Return Return the state (0 for off, 1 for on) of the switch.

Description CheckSwitch command gets the status of the switch on the indicated IO unit. The
optional parameter isInputSwitch (True by default) determines whether it is input or output switch.
The motorIndex parameter could be any of the motors (1, 2 or 3) or external IO indicated by 0.
The switch names can be defined on the configuration screen. The returned value is either 0 (for
switch in low/off status) or 1 (for switch in high/on status).

Example Following examples show how to obtain the switch status for different devices. In the
first example the command retrieves the value of "MotorX_Input_Switch" located on motorX. In
the second example the command retrieves the value of "External_IO_Output_Switch" located on
external IO unit (optional).

 Dim motorInputSwitchStatus as Integer

 motorInputSwitchStatus = sla.CheckSwitch (1,
"MotorX_Input_Switch")

 Dim externalOutputSwitchStatus as Integer

 externalOutputSwitchStatus = sla.CheckSwitch (0,
"External_IO_Input_Switch", False)

Group SLA I/O Commands

110

Reference

9. CurrentCoordinateSystem

Summary Set the current coordinate system.

Declaration CurrentCoordinateSystem (systemName As String)

Return Returns True or False depending on the success or failure of the command.

Description CurrentCoordinateSystem command changes the current coordinate system. Valid
values are "WORLD" or "USER". Set coordinate system to "WORLD" to use the original
(untransformed) data points. Set coordinate system to "USER" to use the transformed data points.

Example Following example changes the coordinate system to "USER"

 sla.CurrentCoordinateSystem ("USER")

Group SLA Axis Transformation Commands

10. CurrentPoint

Summary Return the current location.

Declaration CurrentPoint()

Return Returns a point representing current location.

Description CurrentPoint command returns the current location. Individual axis values can be
obtained by accessing the members of the returned point.

Example Following example stores the current value of motorX in currentX variable.

 Dim currentX as Double

 currentX = sla.CurrentPoint().x

Group SLA Motion Commands

11. DoLine

Summary Move a point in linear trajectory using coordinated motion.

Declaration DoLine(endPoint As Point, speed As Double, acceleration As Double)

Return No return value.

Description DoLine command moves the current point in linear motion to the specified
destination with given speed and acceleration. The command blocks the program execution till the
motion is completed.

Example Following example will move the slides to MyDataset.point1 from current location with
speed 100 and acceleration 1000

111

Smart Linear Actuator User’s Guide

 sla.DoLine (MyDataset.point1, 100, 1000)

Group SLA Motion Commands

12. DoPath

Summary Move a point along a user defined path using coordinated motion.

Declaration DoPath(pathToMoveAlong As Path, speed As Double, acceleration As Double,
Optional cornerRadius As Double)

Return No return value.

Description DoPath command moves the current point along the user defined path with given
speed and acceleration. A path can be a linear path (made up of connected straight lines) or an arc
path (arc of a circle). For a linear path, the optional cornerRadius argument can be used to specify
any desired rounding of the corners. The corners where the rounding can not be achieved, the
cornerRadius argument will have no effect. The rounding of the corners helps with a smoother
trajectory, thus helping to reduce any vibration which can be present due to sudden change in
direction. This rounding works in all geometries including three dimensional paths. The command
blocks the program execution till the motion is completed.

Example Following example moves the point along the MyDataset.path1 with speed 100 and
acceleration 1000 rounding the corners with arc of 5 units wherever possible.

 sla.DoPath (MyDataset.myPath, 100, 1000, 5)

Group SLA Motion Commands

13. DoPositionMove

Summary Do position move to the specified location.

Declaration DoPositionMove(motorIndex As Integer, absolutePosition As Double, speed As
Double, acceleration As Double)

Return No return value.

Description DoPositionMove command moves a motor to the specified absolutePosition with
given speed and acceleration for the motor indicated by motorIndex. Valid values of motorIndex
are 1 for motorX, 2 for motorY and 3 for motorZ. This is a non-blocking command and the
program execution will continue even while the motion is in progress. This is useful in optimizing
cycle times by not waiting for a motor to stop. To wait till the motion is complete, use it in
combination with WaitForStop command.

Example Following example moves motorX to position 50 with speed 100 and acceleration 1000.

 sla.DoPositionMove(1, 50, 100, 1000)

112

Reference

Group SLA Motion Commands

14. DoRelativeMove

Summary Do relative move from the current position in given direction.

Declaration DoRelativeMove(motorIndex As Integer, relativeMoveDistance As Double, speed
As Double, acceleration As Double)

Return No return value.

Description DoRelativeMove command moves a motor in either direction by specified
relativeMoveDistance (positive value moves in positive direction, negative value moves in
negative direction) with given speed and acceleration for the motor indicated by motorIndex.
Valid values of motorIndex are 1 for motorX, 2 for motorY and 3 for motorZ. This is a non-
blocking command and the program execution will continue even while the motion is in progress.
This is useful in optimizing cycle times by not waiting for a motor to stop. To wait till the motion
is complete, use it in combination with WaitForStop command.

Example Following example moves motorX in positive direction by 50 with speed 100 and
acceleration 1000.

 sla.DoRelativeMove(1, 50, 100, 1000)

Group SLA Motion Commands

15. DoVelocityMove

Summary Do constant velocity move for a motor in given direction.

Declaration DoVelocityMove(motorIndex As Integer, direction As Integer, speed As Double,
acceleration As Double)

Return No return value.

Description DoVelocityMove command moves a motor in either direction (+1 for positive
direction, -1 for negative direction) with given speed and acceleration for the motor indicated by
motorIndex. Valid values of motorIndex are 1 for MotorX, 2 for MotorY and 3 for MotorZ. This
is a non-blocking command and the program execution will continue even while the motion is in
progress. This is useful in optimizing cycle times by not waiting for a motor to stop. To wait till
the motion is complete, use it in combination with WaitForStop command.

Example Following examples moves the motorX in negative direction with speed 100 and
acceleration 1000 till it stops (hits the limit switch).

 sla.DoVelocityMove(1, -1, 100, 1000)

Group SLA Motion Commands

113

Smart Linear Actuator User’s Guide

16. ElapsedTimer

Summary Return the elapsed time for the timer.

Declaration ElapsedTimer(timerKey As String, Optional resetTimer As Boolean)

Return Returns elapsed time in seconds since the start of the timer.

Description ElapsedTimer command returns the time in seconds since the start of the timer. First
the timer with the same timerKey has to be started using StartTimer command for this command
to work. If optional resetTimer argument is specified to be True (default is False), then the timer
will reset it. This can be useful while using the same timer for multiple measurements.

Example Following example assigns the myTimer's current value to elapsedTime variable and
resetting the timer.

 Dim elapsedTime as Double

 elapsedTime = sla.ElapsedTimer("myTimer", True)

Group SLA Instrumentation Commands

17. GetValue

Summary Get a stored state using the key.

Declaration GetValue(key As String)

Return Returns stored value associated with the key as String.

Description GetValue command retrieves the earlier stored value using the specified key. The
returned value can be cast back to its original type using appropriate CDbl(), CInt(), CLng(),
CSng() or CBool() functions which take a String as the argument. If no stored values are found for
the specified key, an empty string is returned.

Example Following is an example of getting a stored Integer value with "result" as the key.

 Dim value as Integer

 value = CInt(sla.GetValue("result"))

Group SLA State Management Commands

18. LogMessage

Summary Log a message with given log level.

Declaration LogMessage (message As String, Optional level As Integer)

Return No return value.

114

Reference

Description Logs a message to log window as well as logs.txt file located by default at
C:\Program Files\Robohand\SLA\logs\logs.txt with the given log level. Depending on the log
level value, the message is highlighted in different colors in the log window. The valid log level
values are 1 (information), 2 (warning) or 3 (error).

Example Following is an example for logging message at information level.

 sla.LogMessage("This is an example log message
for information", 1)

Group SLA Miscellaneous Commands

19. MaxOfPath

Summary Get the maximum value of specified axis for the path.

Declaration MaxOfPath(path As Path, axis As Integer)

Return Returns maximum value of specified axis for any point in the path as Double.

Description MaxOfPath command gets the maximum value of specified axis (1, 2, or 3) for the
path. This is useful in defining the envelope of operation.

Example Following is an example of getting maximum Y axis value in MyDataset.path1 and
assigning it to maxY variable.

 Dim maxY as Double

 maxY = sla.MaxOfPath(MyDataset.path1, 2)

Group SLA Motion Commands

20. MinOfPath

Summary Get the minimum value of specified axis for the path.

Declaration MinOfPath (path As Path, axis As Integer)

Return Returns minimum value of specified axis for any point in the path as Double.

Description MinOfPath command gets the minimum value of specified axis (1, 2, or 3) for the
path. This is useful in defining the envelope of operation.

Example Following is an example of getting minimum X axis value in MyDataset.path1 and
assigning it to minX variable.

 Dim minX as Double

 minX = sla.MinOfPath(MyDataset.path1, 1)

115

Smart Linear Actuator User’s Guide

Group SLA Motion Commands

21. MotorStatus

Summary Get and set the motor status information.

Declaration MotorStatus(motorIndex As Integer)

Return Returns an object of MotorStatus type.

Description MotorStatus command returns an object of MotorStatus type which encompasses the
relevant status flags information for the specified motorIndex. Valid values of motorIndex are 1
for MotorX, 2 for MotorY and 3 for MotorZ. Individual status flag value can be obtained by
accessing the members of the returned object. Currently available status flags are as follows and
meaning of the flags when they are True.

Ba - over current state
Bd - user math overflow
Be - excessive position error
Bh - excessive temperature (real time)
Bk - over current state (real time)
Bm - left limit (real time)
Bo - motor off (real time)
Bp - right limit (real time)
Bs - syntax error
Bt - trajectory in progress (real time)
Bu - user array index range error

Apart from these statuses, additional motor status information available is:

MaxCurrent - maximum current limit (0 to 1023, default = 1000). In some applications, if the
motor is misapplied full power, the attached mechanism could be damaged. It can be useful to
reduce the maximum amount of current available thus limiting the torque the motor can put out.

MaxPositionError - maximum position error (1 to 32000, default = 1000). The difference between
where the motor shaft is and where it is supposed to be is appropriately called the 'error'. The
magnitude and sign of the error is delivered to the motor in the form of torque, after it is put
through the PID filter. The higher the error, the more out of control the motor is. Therefore, it is
often useful to put a limit on the allowable error, after which time the motor will be turned off.

Calibration - It returns true/false depending on whether the motor has been calibrated or not. This
information can be used to alert an operator before proceeding with the calibration.

Example Following example retrieves value of Bt (whether motor trajectory in progress) for
MotorX and stores it in isMoving Boolean variable. The second example sets the maximum
position error 500 on MotorX which will trigger position error at much tighter variations.

 Dim isMoving as Boolean

 isMoving = sla.MotorStatus(1).Bt

 sla.MotorStatus(1).MaxPositionError = 500

116

Reference

Group SLA Motor Commands

22. ReflectAxis

Summary Reflect specified axis.

Declaration ReflectAxis(Optional xReflection As Boolean, Optional yReflection As Boolean,
Optional zReflection As Boolean , Optional isChained As Boolean)

Return No return value.

Description ReflectAxis command multiplies -1 to the x, y or z axis values in the WORLD
coordinate system to create transformed values in the USER coordinate system. Since each of the
reflection is optional, it is possible to perform reflection only in the desired coordinate. Using the
optional isChained argument (False by default), the reflect transformation can be chained with any
earlier defined transformation to create a more complex combined transformation. A
transformation has to be explicitly applied to the position data using one of the
ApplyTransformation* command to have any effect on the motion. It is useful to note that the
same effect can be achieved by using ScaleAxis command with scaleFactor of -1.

Example Following example shows how to reflect y axis values and remove any of the earlier
transformations by specifying isChained as False. The equivalent command using ScaleAxis is
also shown below.

 sla.ReflectAxis (False, True, False, False)

 sla.ScaleAxis(1, -1, 1, False)

Group SLA Axis Transformation Commands

23. RemoveValue

Summary Remove a state from memory and persistent storage (if optionally stored).

Declaration RemoveValue(key As String)

Return No return value.

Description RemoveValue command removes an earlier stored value associated with the key. If
the value was also stored in persistent storage, that value is removed as well. If the value is not
removed it continues to be available to all the programs till the SLA Operating Software
terminates. It is recommended that any unused persistent values be removed to save disk space.

Example Following is an example of removing a stored value with "result" as the key.

 sla.RemoveValue("result")

Group SLA State Management Commands

117

Smart Linear Actuator User’s Guide

24. Reset

Summary Reset the SLA Operating Software.

Declaration Reset()

Return No return value.

Description Reset command does multiple reset operations. It resets the coordinate system back
to "WORLD", removes any transformation information, removes the internal cache used to speed
up the coordinated motion moves, clears all the status flags from motors, and removes any
appended paths as a result of AppendPaths command. Reset command should be used only once at
the beginning of the program. The MMP program template used to create a new MMP program
automatically includes call to Reset command in its initialization method.

Example Following is an example of resetting the SLA Operating Software.

 sla.Reset()

Group SLA Initialization Commands

25. ReversePath

Summary Reverse the indicated axis values.

Declaration ReversePath(Optional xReverse As Boolean, Optional yReverse As Boolean,
Optional zReverse As Boolean)

Return No return value.

Description ReversePath command reverses the order of values in the indicated coordinate for a
path. By default the command will reverse all the three coordinates, effectively reversing the path
(the last point of the path becomes the first point and vice versa). If only a specific coordinate
needs to be reversed, pass False to other coordinates. This along with ReflectAxis can be used to
create a continuous path combining the original and the reflected path. This command differs from
other transformation command since it specifically applies only to a path and can not be chained.
A transformation has to be explicitly applied to the position data using one of the
ApplyTransformation* command to have any effect on the motion.

Example Following examples show how to reverse a whole path or a specific coordinate. The first
example reverses the whole path and the second example reverses only the x coordinates of the
points in a path.

 sla.ReversePath()

 sla.ReversePath(, False, False)

Group SLA Axis Transformation Commands

118

Reference

26. RotateAxis

Summary Rotate around specified axis by given angle (degrees).

Declaration RotateAxis (Optional angle As Double, Optional aroundAxis As Integer, Optional
isChained As Boolean)

Return No return value.

Description RotateAxis command rotates a point in orthogonal plane around the specified axis (1
- default, 2 or 3) in the WORLD coordinate system to create transformed values in the USER
coordinate system. Using the optional isChained argument (False by default), the rotate
transformation can be chained with any earlier defined transformation to create a more complex
combined transformation. A transformation has to be explicitly applied to the position data using
one of the ApplyTransformation* command to have any effect on the motion. It is useful to note
that the same effect can be achieved by using RotateAxisAroundPoint command with origin as
aroundPoint parameter.

Example Following example shows how to rotate a point in x-y plane by 90 degrees and remove
any of the earlier transformations by specifying isChained as False.

 sla.RotateAxis(90, 3, False)

Group SLA Axis Transformation Commands

27. RotateAxisAroundPoint

Summary Rotate around specified point by given angle (degrees).

Declaration RotateAxisAroundPoint(Optional aroundPoint As Point, Optional angle As Double,
Optional aroundAxis As Integer, Optional isChained As Boolean)

Return No return value.

Description RotateAxisAroundPoint command rotates a point in orthogonal plane around the axis
that passes thorough the specified point and is parallel to the aroundAxis (1 - default, 2 or 3) in the
WORLD coordinate system to create transformed values in the USER coordinate system. Using
the optional isChained argument (False by default), the rotate transformation can be chained with
any earlier defined transformation to create a more complex combined transformation. A
transformation has to be explicitly applied to the position data using one of the
ApplyTransformation* command to have any effect on the motion.

Example Following example shows how to rotate a point in x-y plane around MyDataset.point1
by 90 degrees and remove any of the earlier transformations by specifying isChained as False.

 sla.RotateAxisAroundPoint(MyDataset.point1, 90,
3, False)

Group SLA Axis Transformation Commands

119

Smart Linear Actuator User’s Guide

28. RunDiagnostics

Summary Run diagnostics to recover from unexpected motor problems.

Declaration RunDiagnostics()

Return Returns True or False depending on the success or failure of the command.

Description RunDiagnostics runs several internal diagnostics to fix a problem which can't be
fixed by user level commands. For example, when power is turned off and on again (e.g. in the
event of an E-Stop) while the SLA OS program is running, the serial connection becomes invalid.
In this case no communication can take place between the software and the motors. Running this
command reconnects to the motors again with the new connections and allowing the
communication to take place.

Example Following is an example of running diagnostics to fix unexpected problems.

 sla.RunDiagnostics()

Group SLA Motor Commands

29. SaveValue

Summary Save a state in memory or persistent storage for later retrieval.

Declaration SaveValue(key As String, value As String, Optional isPersistence As Boolean)

Return No return value.

Description SaveValue command stores a String value in program memory or optionally on the
disk when isPersistence is declared True (False by default). When a value is stored in memory, it
is not available when the SLA Operating Software exits e.g. in case of power failure. If there is
some critical information that needs to survive the unexpected exit of the SLA Operating
Software, it must be stored with isPersistence flag to be True. Since all programs share the same
memory space, it is important to choose the name of keys judiciously to avoid overwriting.
Another very important usage is as a shared memory space for communicating among different
programs when Multitasking feature is used. A program running in one thread can SaveValue,
which can be retrieved by another program running in different thread using GetValue. Since both
key and value arguments are passed as String, any numerical value must be converted to String
using CStr() function.

Example Following is an example of storing a Integer value using "result" as the key.

 Dim value as Integer

 value = 10

 sla.SaveValue("result", CStr(value))

Group SLA State Management Commands

120

Reference

30. ScaleAxis

Summary Scale axis by specified scaleFactor.

Declaration ScaleAxis(Optional xScale As Double, Optional yScale As Double, Optional zScale
As Double, Optional isChained As Boolean)

Return No return value.

Description ScaleAxis command multiplies the scaleFactor (either negative or positive) specified
by xScale, yScale and zScale to the x, y or z axis values in the WORLD coordinate system to
create transformed values in the USER coordinate system. Since each of the scaleFactor is
optional, it is possible to perform scaling only in the desired coordinate. Using the optional
isChained argument (False by default), the scale transformation can be chained with any earlier
defined transformation to create a more complex combined transformation. A transformation has
to be explicitly applied to the position data using one of the ApplyTransformation* command to
have any effect on the motion.

Example Following example shows how to multiply x and z axis values by 2 and remove any of
the earlier transformations by specifying isChained as False.

 sla.ScaleAxis(2, ,2, False)

Group SLA Axis Transformation Commands

31. SendMail

Summary Send email to the specified address.

Declaration SendMail(smtpServer As String, recipient As String, message As String)

Return No return value.

Description SendMail command sends an email containing the message to the specified recipient
using the smtpServer for relay. The sender will be sla@robohandsla.com (SLA Software).

Example Following is an example of sending email to Quality Assurance department of an
example company.

 sla.SendMail("smtp.exampleCompany.com",
"qa@exampleCompany.com", "SLA Operating Software completed
successfully!")

Group SLA Miscellaneous Commands

32. SetServoOff

Summary Turn off servo in the motor, optionally turning off the automatic brakes.

Declaration SetServoOff (motorIndex As Integer, Optional autoBrake As Boolean)

121

Smart Linear Actuator User’s Guide

Return No return value.

Description SetServoOff command turns off servo in the indicated motor (1, 2 or 3). If there is a
need for moving motors around by hand, the automatic brakes (on by default) can be turned off by
supplying the optional argument autoBrake as False. Since turning the servo off and the brakes at
the same time can lead to undesired motions (e.g. z slide falling down due to gravity), exercise
caution in using the command.

Example Following examples turns off servo of motorX, while maintaining the brakes.

 sla.SetServoOff(1, True)

Group SLA Motor Commands

33. SetSwitch

Summary Set the outputSwitch to specified status.

Declaration SetSwitch (motorIndex As Integer, outputSwitch As String, status As Integer)

Return No return value.

Description SetSwitch command sets outputSwitch on the indicated IO unit to specified status.
The motorIndex parameter could be any of the motors (1, 2 or 3) or external IO indicated by 0.
The outputSwitch names can be defined on the configuration screen. The status could be 0 (for
setting outputSwitch to low/off) or 1 (for setting outputSwitch to high/on).

Example Following examples show how to set the output switch status for different devices. In
the first example the command sets the value of "MotorX_Output_Switch" located on motorX to
1. In the second example the command sets the value of "External_IO_Output_Switch" located on
external IO unit (optional) to 0.

 sla.SetSwitch (1, "MotorX_Output_Switch", 1)

 sla.SetSwitch (0, "External_IO_Output_Switch", 0)

Group SLA I/O Commands

34. ShiftAxis

Summary Shift axis by specified distances.

Declaration ShiftAxis(Optional xShift As Double , Optional yShift As Double, Optional zShift
As Double, Optional isChained As Boolean)

Return No return value.

Description ShiftAxis command adds the shiftDistance (either negative or positive) specified by
xShift, yShift and zShift to the x, y or z axis values in the WORLD coordinate system to create
transformed values in the USER coordinate system. Since each of the shiftDistance is optional, it
is possible to perform shifts only in the desired coordinate. Using the optional isChained argument
(False by default), the shift transformation can be chained with any earlier defined transformation

122

Reference

to create a more complex combined transformation. A transformation has to be explicitly applied
to the position data using one of the ApplyTransformation* command to have any effect on the
motion.

Example Following example shows how to shift y axis values by 20 units and remove any of the
earlier transformations by specifying isChained as False.

 sla.ShiftAxis(, 20, , False)

Group SLA Axis Transformation Commands

35. StartProgram

Summary Start another program in a different thread.

Declaration StartProgram(programName As String)

Return No return value.

Description StartProgram command spawns the specified program in a new thread and begins its
execution. Since this is a non-blocking command, the original program continues to run at the
same time. Once started, both the programs run independent of each other i.e. no parent-child
relationship is maintained. These programs can communicate among themselves using the shared
memory provided by SLA State Management Commands. Running multiple programs
simultaneously provides a very powerful multi-tasking capability to SLA Operating Software.
However, since these threads are sharing the same CPU, the available cycle time gets divided
among them which may result in slowing down of individual programs. In the time sensitive
operations, it is recommended to run only one program at a time. Also make sure that only one of
the concurrently running program contains the motion related commands, as otherwise it can result
in an unpredictable behavior. Note that it is an idempotent command i.e. multiple invocations for
starting the same program will result in only one instance of the program starting and all
subsequent requests will be ignored. Typical application includes running the motors in one
program while monitoring inputs or controlling outputs in another program.

Example Following example starts another program "program2.mmp".

 sla.StartProgram("program2.mmp")

Group SLA Multi Tasking Commands

36. StartTimer

Summary Start the specified timer.

Declaration StartTimer(timerKey As String)

Return No return value.

Description StartTimer command starts a timer with the specified timerKey. Multiple timers can
be started by specifying different timerKeys. The command ElapsedTimer is used to retrieve the
current value of the timer using the timerKey.

123

Smart Linear Actuator User’s Guide

Example Following example starts the myTimer.

 sla.StartTimer("myTimer")

Group SLA Instrumentation Commands

37. StopMotion

Summary Stop motion of the specified motor.

Declaration StopMotion(Optional motorIndex As Integer, Optional deaccelerate As Boolean)

Return No return value.

Description StopMotion command terminates the current trajectory of the specified motor. The
motorIndex parameter could be any of the motors (1, 2 or 3). If no argument is specified, all
motors (default) are stopped. The second optional parameter deaccelerate (True by default),
controls the velocity profile while stopping the motors. If True then the motors deaccelerate to
stop, otherwise they stop immediately. If the command StopMotion is used with the coordinated
motion commands DoLine or DoPath from a different thread, it can result in an error.

Example Following example deaccelerates motorX to stop.

 sla.StopMotion(1, True)

Group SLA Motion Commands

38. StopProgram

Summary Stop another program running in the different thread.

Declaration StopProgram(programName As String)

Return No return value.

Description StopProgram command terminates the specified program running in the different
thread. Since all the programs run independent of each other i.e. no parent-child relationship is
maintained, stopping of a parent program has no effect on child program or vice versa. The
program terminates after completing the currently executing statement.

Example Following example stops another program "program2.mmp".

 sla.StopProgram("program2.mmp")

Group SLA Multi Tasking Commands

39. WaitForStop

Summary Wait for the motion to be completed.

124

Reference

Declaration WaitForStop(Optional motorIndex As Integer, Optional monitorMotorIndex As
Integer, Optional monitorInputSwitch As String, Optional monitorInputSwitchStatus As Integer,
Optional decelerate As Boolean, Optional timeOutSeconds As Long)

Return Returns True if all motors did stop or False otherwise (including return due to timeOut)

Description WaitForStop command waits for the end of motion of all (default) motors. If the
optional motorIndex argument is specified then it waits for the end of motion only for that motor.
The motorIndex parameter could be any of the motors (1, 2 or 3). The subsequent three optional
arguments can be used together to provide a monitor signal which when activated (has the value
specified by monitorInputSwitchStatus) stops the motion. The values for monitorMotorIndex are
the same as that for CheckSwitch command (1,2,3 for IO's on motors or 0 for external IO).
monitorInputSwitch is the name of the input switch to monitor and monitorInputSwitchStatus
indicates on what status (0 or 1) the motion stops. The optional parameter decelerate (True by
default), controls the velocity profile while stopping the motor. If True then the motor decelerates
to stop, otherwise it stops immediately. The optional parameter timeOutSeconds allows it to wait
only for specified seconds. If the motors are still in motion after timeOutSeconds, command will
return with the False return value. If a motor stops due to fault (e.g. position error or limit switch),
then an error condition is raised which will usually end the program. This command blocks the
program execution till either the motion stops (if no monitor related or timeOut arguments are
specified) or when the monitor signal is activated (if monitor related arguments are specified) or
when the timeOut period is expired. This command can be used along with DoRelativeMove,
DoPositionMove or DoVelocityMove commands to achieve synchronized motion (as opposed to
coordinated motion where each of the motors move in lockstep manner) where each motor runs
independently to obtain highly optimized timing profile.

Example Following examples demonstrate the command with and without the external signal
monitoring. The first example shows starting synchronized motion by using DoRelativeMove and
waiting for completion of motion of all motors with timeOut parameter of 5 seconds. MotorX is
doing relative move from the current location for 100 units with speed 100 and acceleration 1000.
MotorY is doing relative move from the current location for 200 units with speed 200 and
acceleration 1000. MotorX is doing relative move from the current location for 500 units with
speed 500 and acceleration 1000. The use of WaitForStop ensures that the subsequent commands
will execute after all motors have reached their destinations or five seconds have elapsed,
whichever occurs first. The second example shows starting synchronized motion by using
DoPositionMove and blocking till the "MotorX_Input_Switch" switch located on motorX goes
high (1) or the motion is completed on all motors. If the "MotorX_Input_Switch" is activated
before the motion ends, the motor will come to abrupt and immediate stop, since the parameter
decelerate is False.

 sla.DoRelativeMove 1, 100, 100, 1000

 sla.DoRelativeMove 2, 200, 200, 1000

 sla.DoRelativeMove 3, 500, 500, 1000

 sla.WaitForStop(, , , , , 5)

 sla.DoPositionMove 1, 100, 100, 1000

 sla.DoPositionMove 2, 200, 200, 1000

 sla.DoPositionMove 3, 500, 500, 1000

125

Smart Linear Actuator User’s Guide

 sla.WaitForStop(0, 1, "MotorX_Input_Switch", 1,
False)

Group SLA Motion Commands

40. WaitForSwitch

Summary Wait for an input switch to attain specified status.

Declaration WaitForSwitch (motorIndex As Integer, inputSwitch As String, status As Integer,
Optional timeOutSeconds As Long)

Return Returns True or False depending on the success or failure of the command.

Description WaitForSwitch command waits timeOutSeconds for an input switch to attain the
specified status on the indicated IO unit. The motorIndex parameter could be any of the motors (1,
2 or 3) or external IO indicated by 0. The inputSwitch names can be defined on the configuration
screen. The status could be 0 (for inputSwitch going low/off) or 1 (for inputSwitch going high/on).
If timeOutSeconds is not specified or is negative value, the program will wait indefinitely
(default).

Example Following examples show how to wait for the input switch status for different devices.
In the first example the command waits at most 10 seconds for "MotorX_Input_Switch" located
on motorX to go high. In the second example the command waits indefinitely for
"External_IO_Input_Switch" located on external IO unit (optional) to go low.

 sla.WaitForSwitch(1, "MotorX_Input_Switch", 1,
10)

 sla.WaitForSwitch(0, "External_IO_Input_Switch",
0)

Group SLA I/O Commands

126

Reference

EXCEL Commands Reference
Following are the EXCEL Commands which can be used in a Multi Motor Program (MMP). They
are arranged in related groups and in alphabetic order for easy access. All the EXCEL commands
can be used in a MMP program by using "excel." namespace (type CTRL-SPACE after typing
excel. in the MMP Programming environment.)

EXCEL Commands in Related Groups
The EXCEL Commands are categorized in each group depending on their functionalities.

• EXCEL Initialization Commands

This command is used to initialize internal Excel cache.

o ReadFile

• EXCEL Interaction Commands

This command is used to read the values from the internal Excel cache.

o GetValue

EXCEL Commands in Alphabetic Order

1. GetValue
2. ReadFile

EXCEL Commands

1. ReadFile

Summary Read from the Excel file.

Declaration ReadFile(fileName As String, Optional sheetName As String)

Return Returns True or False depending on the success or failure of the command.

Description ReadFile command read from the specified Excel file and optionally specified sheet
(default is 'Sheet1'). If read attempt fails (e.g. file is not present), it returns False

Example Following is an example of reading from C:\Data.xls file's 'Main' sheet.

127

Smart Linear Actuator User’s Guide

 Dim result as Boolean

 result = excel.ReadFile("C:\Data.xls", "Main")

Group EXCEL Initialization Commands

2. GetValue

Summary Get the value from Excel spreadsheet.

Declaration GetValue(row As Integer, col As String)

Return Returns a string value.

Description GetValue command gets the value of row and column location from the earlier read
Excel spreadsheet. The column argument can be specified as either number or column letter. All
values are returned as string which can be converted to the appropriate type..

Example Following is an example of reading a value for row 2, column A and assigning it to
result Integer variable. Note that the same value can be obtained by using column number 1.

 Dim result as Integer

 result = CInt(excel.GetValue(2,"A"))

 result = CInt(excel.GetValue(2,"1")) 'same value

Group EXCEL Interaction Commands

128

Reference

VISION Commands Reference
Following are the VISION Commands which can be used in a Multi Motor Program (MMP). They
are arranged in related groups and in alphabetic order for easy access. All the VISION commands
can be used in a MMP program by using "vision." namespace (type CTRL-SPACE after typing
vision. in the MMP Programming environment.)

VISION Commands in Related Groups
The VISION Commands are categorized in each group depending on their functionalities.

• VISION Connection Commands

These commands are used to establish connection to vision system.

o ConnectCognex
o ConnectDVT

• VISION Interaction Commands

These commands are used to interact with the vision system.

o GetCognexValue
o GetDVTValue
o ProcessCognex
o ProcessDVT

VISION Commands in Alphabetic Order

1. ConnectCognex
2. ConnectDVT
3. GetCognexValue
4. GetDVTValue
5. ProcessCognex
6. ProcessDVT

VISION Commands

1. ConnectCognex

Summary Connect to the Cognex vision system.

Declaration ConnectCognex(host As String, port as Integer, Optional user As String, Optional
password As String)

129

Smart Linear Actuator User’s Guide

Return Returns True or False depending on the success or failure of the command.

Description Connect command establishes connection to the Cognex vision system on host and
port with optional user and password. If connection fails (e.g. user or password is wrong), it
returns False

Example Following is an example of connecting to Cognex vision system on host 'localhost', port
23 and user and password as 'admin'.

 Dim result as Boolean

 result =
vision.ConnectCognex("localhost",23,"admin","admin")

Group VISION Connection Commands

2. ConnectDVT

Summary Connect to the DVT vision system.

Declaration ConnectDVT(host As String, port as Integer, Optional user As String, Optional
password As String)

Return Returns True or False depending on the success or failure of the command.

Description Connect command establishes connection to the DVT vision system on host and port
with optional user and password. If connection fails (e.g. user or password is wrong), it returns
False

Example Following is an example of connecting to DVT vision system on host 'localhost', port
5000.

 Dim result as Boolean

 result = vision.ConnectDVT("localhost",5000)

Group VISION Connection Commands

3. GetCognexValue

Summary Read the value from Cognex Vision System.

Declaration GetCognexValue(col As String, row As Integer)

Return Returns a string value.

Description GetCognexValue command reads the value from col and row location on Cognex
system spreadsheet. In Cognex system, each column is alphabetically named (a, b, c etc.) and each
row is numerically numbered (1, 2, 3 etc.). All values are returned as text.

Example Following is an example of reading a value for spreadsheet location a, 2 and assigning it
to result Integer variable.

130

Reference

 Dim result as Integer

 result = CInt(vision.GetCognexValue("a",2))

Group VISION Interaction Commands

4. GetDVTValue

Summary Read the value from DVT Vision System.

Declaration GetDVTValue(key As String)

Return Returns a string value.

Description GetDVTValue command returns the value represented by key as string.

Example Following is an example of reading a value associated with key 'radius' and assigning it
to result Integer variable.

 Dim result as Integer

 result = CInt(vision.GetDVTValue("radius"))

Group VISION Interaction Commands

5. ProcessCognex

Summary Process the image capture.

Declaration ProcessCognex()

Return Returns True or False depending on the success or failure of the command.

Description Process command triggers the image capture and subsequent processing of the
acquired image.

Example Following is an example of processing once the part is in place.

 vision.ProcessCognex()

Group VISION Interaction Commands

6. ProcessDVT

Summary Process the image capture.

Declaration ProcessDVT()

131

Smart Linear Actuator User’s Guide

Return Returns True or False depending on the success or failure of the command.

Description ProcessDVT command triggers the image capture and subsequent processing of the
acquired image.

Example Following is an example of processing once the part is in place.

 vision.ProcessDVT()

Group VISION Interaction Commands

132

Reference

HMI Commands Reference
Following are the HMI Commands which can be used in a Multi Motor Program (MMP). They are
arranged in related groups and in alphabetic order for easy access. All the HMI commands can be
used in a MMP program by using "hmi." namespace (type CTRL-SPACE after typing hmi. in the
MMP Programming environment.)

HMI Commands in Related Groups
The HMI Commands are categorized in each group depending on their functionalities.

• HMI Data Commands

These commands are used to control the I/O switches. They can be used to control the integrated
I/O as well as externally supplied unit.

o ReadBinary
o ReadRegister
o SaveIO
o WriteBinary
o WriteRegister

• HMI Motion Commands

These commands directly related to individual motors that drive the slides. They can be used to
obtain useful status information regarding motors.

o WaitForStop

HMI Commands in Alphabetic Order

1. ReadBinary
2. ReadRegister
3. SaveIO
4. WaitForStop
5. WriteBinary
6. WriteRegister

133

Smart Linear Actuator User’s Guide

HMI Commands

1. ReadBinary

Summary Read a binary number from the HMI unit.

Declaration ReadBinary(ioNumber As Integer)

Return Returns a binary Integer value.

Description ReadBinary command reads a binary (0 or 1) value from the Master HMI unit for the
specified ioNumber.

Example Following is an example for reading a binary value for ioNumber 3 and assigning it to
ioValue Integer variable.

 Dim ioValue as Integer

 ioValue = hmi.ReadBinary(3)

Group HMI Data Commands

2. ReadRegister

Summary Read an unsigned 16 bit integer from the HMI unit.

Declaration ReadRegister(ioNumber As Integer)

Return Returns a integer Long value.

Description ReadRegister command reads an unsigned 16 bit integer (0 to 65535) value from the
Master HMI unit for the specified ioNumber.

Example Following is an example for reading a value for ioNumber 3 and assigning it to ioValue
Long variable.

 Dim ioValue as Long

 ioValue = hmi.ReadRegister(3)

Group HMI Data Commands

3. SaveIO

Summary Save Modbus IO data to the persistent storage.

Declaration SaveIO()

Return No return value.

134

Reference

Description SaveIO command writes the current values of Modbus registers and coils to the
persist ant storage. These values are restored when the program starts again.

Example Following is an example for saving the Modbus IO data.

 hmi.SaveIO()

Group HMI Data Commands

4. WaitForStop

Summary Wait for the motion to be completed.

Declaration WaitForStop(Optional motorIndex As Integer, Optional monitorIONumber As
Integer, Optional monitorIOStatus As Integer, Optional deaccelerate As Boolean)

Return No return value.

Description WaitForStop command waits for the end of motion of all motors (default). If the
optional motorIndex argument is specified then it waits for the end of motion only for that motor.
The motorIndex parameter could be any of the motors (1, 2 or 3). The additional two optional
arguments can be used together to provide a monitor signal which when activated (has the value
specified by monitorIOStatus) stops the motion. The value for monitorIONumber is any binary
ioNumber on the HMI unit. monitorInputSwitchStatus indicates on what status (0 or 1) the motion
stops. The optional parameter deaccelerate (True by default), controls the velocity profile while
stopping the motor. If True then the motor deaccelerates to stop, otherwise it stops immediately.
This command blocks the program execution till either the motion stops (if no monitor related
arguments are specified) or when the monitor signal is activated (if monitor related arguments are
specified). This command can be used along with sla.DoRelativeMove, sla.DoPositionMove or
sla.DoVelocityMove commands to achieve synchronized motion (as opposed to coordinated
motion where each of the motors move in lockstep manner) where each motor runs independently
to obtain highly optimized timing profile.

Example Following example shows starting synchronized motion by using sla.DoPositionMove
and blocking till the signal at ioNumber 5 goes low (0) or the motion is completed on all motors.
If the IO 5 is activated before the motion ends, the motors will come to abrupt and immediate stop,
since the parameter deaccelerate is False.

 sla.DoPositionMove 1, 100, 100, 1000

 sla.DoPositionMove 2, 200, 200, 1000

 sla.DoPositionMove 3, 500, 500, 1000

 hmi.WaitForStop(0, 5, 0, False)

Group HMI Motion Commands

5. WriteBinary

Summary Write a binary number to the HMI unit.

135

Smart Linear Actuator User’s Guide

Declaration WriteBinary(ioNumber As Integer, value As Integer)

Return No return value.

Description WriteBinary command writes a binary (0 or 1) value to the Master HMI unit for the
specified ioNumber.

Example Following is an example for writing a binary value 1 to ioNumber 3.

 hmi.WriteBinary(3, 1)

Group HMI Data Commands

6. WriteRegister

Summary Write an unsigned 16 bit integer to the HMI unit.

Declaration WriteRegister(ioNumber As Integer, value As Long)

Return No return value.

Description WriteRegister command writes an unsigned 16 bit integer (0 to 65535) value to the
Master HMI unit for the specified ioNumber.

Example Following is an example for writing an integer value 314 to ioNumber 3.

 hmi.WriteRegister(3, 314)

Group HMI Data Commands

136

Reference

SERIAL Commands Reference
Following are the SERIAL Commands which can be used in a Multi Motor Program (MMP).
They are arranged in related groups and in alphabetic order for easy access. All the SERIAL
commands can be used in a MMP program by using "serial." namespace (type CTRL-SPACE
after typing serial. in the MMP Programming environment.)

SERIAL Commands in Related Groups
The SERIAL Commands are categorized in each group depending on their functionalities.

• SERIAL Connection Commands

These commands are used to open and close a connection to the serial system.

o ClosePort
o OpenPort

• SERIAL Interaction Commands

These commands are used to interact with the serial system.

o ReadPort
o WritePort

SERIAL Commands in Alphabetic Order

1. ClosePort
2. OpenPort
3. ReadPort
4. WritePort

SERIAL Commands

1. ClosePort

Summary Close previously opened serial port.

Declaration ClosePort()

Return No return value.

Description ClosePort command closes previously opened serial port. If the port is not open, this
command has no effect.

137

Smart Linear Actuator User’s Guide

Example Following is an example of closing an already opened serial port.

 serial.ClosePort()

Group SERIAL Connection Commands

2. OpenPort

Summary Open specified port to the serial system.

Declaration OpenPort(portNum As Integer, Optional baudRate As Long, Optional parity As
String, Optional dataBits As Integer, Optional stopBit As Double, Optional handshake As Integer)

Return No return value.

Description OpenPort command establishes connection to the serial system at the specified
portNum (1 = COM1, 2 = COM2 etc.). The additional optional parameters can be specified to
further control the communication. Valid and default values are shown below.

o baudRate - 110, 300, 600, 1200, 2400, 9600 (default), 14400, 19200, 28800, 38400, 56000, 128000, 256000
o parity - "E", "M", "N" (default), "O", "S"
o dataBits - 4, 5, 6, 7, 8 (default)
o stopBit - 1 (default), 1.5, 2
o handshake - 0 (none), 1 (XON/XOFF, default), 2 (RTS/CTS), 3 (both)

Example Following is an example of opening COM1 port with 19200 baudrate and using other
default values.

 serial.OpenPort 1, 19200

Group SERIAL Connection Commands

3. ReadPort

Summary Read from the previously opened serial port.

Declaration ReadPort()

Return Returns a string value.

Description ReadPort command reads from the previously opened port and returns a string value.

Example Following is an example of reading the serial port.

 Dim response as String

 response = serial.ReadPort()

Group SERIAL Interaction Commands

138

Reference

4. WritePort

Summary Write to the previously opened serial port.

Declaration WritePort(data As String)

Return No return value.

Description WritePort command writes data to the previously opened port.

Example Following is an example of writing to the serial port.

 serial.WritePort("0RSP")

Group SERIAL Interaction Commands

139

Smart Linear Actuator User’s Guide

SLA SMP Commands Reference
Following are the SMP Commands which can be used in a Smart Motor Program (SMP). They are
arranged in related groups and in alphabetic order for easy access.

SMP Commands in Related Groups
The SMP Commands are categorized in each group depending on their functionalities.

• SMP Status Commands

These commands can be used to obtain the binary status bits (B*) to use in a program or for
reporting as the host commands (RB*).

o ADDR
o Ba
o Bb
o Bc
o Bd
o Be
o Bf
o Bh
o Bi
o Bk
o Bl
o Bm
o Bo
o Bp
o Br
o Bs
o Bt
o Bu
o Bv
o Bw
o Bx
o RBa
o RBb
o RBc
o RBd
o RBe
o RBf
o RBh
o RBi
o RBk
o RBl
o RBm
o RBo
o RBp
o RBr
o RBs

140

Reference

o RBt
o RBu
o RBw
o RBx
o RPW
o RS
o RW

• SMP IO Commands

These commands are used to control the integrated I/O (12 input and 6 output) switches.

o I1 to I12
o O1 to O6

• SMP Brake Commands (where optional brake exists)

Many SmartMotors are available with power safe brakes. These brakes will apply a force to keep
the shaft from rotating should the SmartMotor lose power. The brakes used in SmartMotors are
zero-backlash devices with extremely long life spans. It is well within their capabilities to operate
interactively within an application. Care should be taken not to create a situation where the brake
will be set repeatedly during motion. That will reduce the brake’s life

o BRKENG
o BRKRLS
o BRKSRV
o BRKTRJ

• SMP Tuning Commands

These (K*) commands help tune a SmartMotor.

o F
o KA=expression
o KD=expression
o KG=expression
o KI=expression
o KL=expression
o KP=expression
o KS=expression
o KV=expression

141

Smart Linear Actuator User’s Guide

• SMP Reset Commands

These commands help to reset system state flags.

o Z
o Za
o Zb
o Zc
o Zd
o Zf
o Zl
o Zr
o Zs
o Zu
o Zw
o ZS

• SMP Programming Commands

Program commands are like chores, whether it is to turn on an output, set a velocity or start a
move. A program is a list of these chores. When a programmed SmartMotor is powered-up or its
program is reset with the Z command, it will execute its program from top to bottom, with or
without a host P.C. Connected. This section covers the commands that control the program itself.
Once the program is running, there are a variety of commands that can redirect program flow and
most of those can do so based on certain conditions. How these conditional decisions are setup
determines what the programmed SmartMotor will do, and exactly how "smart" it will actually be.

o BREAK
o C#
o CASE
o DEFAULT
o ELSE
o ELSEIF
o END
o ENDS
o ENDIF
o GOSUB#
o GOTO#
o IF
o LOOP
o RETURN
o RUN
o RUN?
o SWITCH
o TWAIT
o WAIT
o WHILE

142

Reference

• SMP Motion Commands

These commands are responsible for the motion of a SmartMotor in various modes.

o A
o D
o G
o MP
o MV
o P
o RA
o RD
o RP
o RV
o S
o V
o X

• SMP Variables Commands

Variables are data holders that can be read, set and changed within the program or over the
communication channel.
A variable can be set to an expression with only one operator and two operands. The operators can
be any of the following:

+ Addition
- Subtraction
* Multiplication
/ Division
& Bit wise AND
| Bit wise OR

The following are legal:
a=b+c, a=b+3, a=5+8
a=b-c, a=5-c, a=b-10
a=b*c, a=3*5, a=c*3
a=b/c, a=b/2, a=5/b
a=b&c, a=b&8
a=b|c, a=b|15

An array variable is one that has a numeric index component that allows the numeric selection of
which variable a program is to access. Common use of the array variable type is to set up what is
called a buffer. In many applications, the SmartMotor will be tasked with inputting data about an
array of objects and to do processing on that data in the same order, but not necessarily at the same
time. Under those circumstances it may be necessary to "buffer" or "store" that data while the
SmartMotor processes it at the proper times.

To set up a buffer the programmer would allocate a block of memory to it, assign a variable to an
input pointer and another to an output pointer. Both pointers would start out as zero and every
time data was put into the buffer the input pointer would increment. Every time the data was used,
the output buffer would likewise increment. Every time one of the pointers is incriminated, it
would be checked for exceeding the allocated memory space and rolled back to zero in that event,
where it would continue to increment as data came in. This is a first-in, first-out or "FIFO" circular

143

Smart Linear Actuator User’s Guide

buffer. Be sure there is enough memory allocated so that the input pointer never overruns the
output pointer.

In addition there is 32K of non-volatile EEPROM memory to store variables when they need to
survive the motor powering down which can be accessed using EPTR, VST and VLD commands.

o @P
o @PE
o @V
o a...z
o aa...zzz
o al[index]
o aw[index]
o ab[index]
o EPTR=expression
o Ra ... Rz
o Raa ... Rzz
o Raaa ... Rzzz
o Rab[index]
o Ral[index]
o Raw[index]
o VLD
o VST

• SMP Motor Commands

These commands set important characteristics of the SmartMotor.

o E=expression
o F=expression
o I
o O
o OFF
o RE
o RI
o RPE

• SMP Debug Commands

These commands are used for aiding in debugging the SMP programs.

o PRINT
o SILENT
o TALK

144

Reference

SMP Commands in Alphabetic Order

1. @P
2. @PE
3. @V
4. a...z
5. aa...zzz
6. al[index]
7. aw[index]
8. ab[index]
9. A=expression
10. ADDR
11. Ba
12. Bb
13. Bc
14. Bd
15. Be
16. Bf
17. Bh
18. Bi
19. Bk
20. Bl
21. Bm
22. Bo
23. Bp
24. Br
25. Bs
26. Bt
27. Bu
28. Bv
29. Bw
30. Bx
31. BRKENG
32. BRKRLS
33. BRKSRV
34. BRKTRJ
35. BREAK
36. C#
37. CASE
38. D=expression
39. DEFAULT
40. E=expression
41. ELSE
42. ELSEIF
43. END
44. ENDS
45. ENDIF
46. EPTR=expression
47. F
48. F=expression
49. G
50. GOSUB#
51. GOTO#
52. I
53. I1 to I12

145

Smart Linear Actuator User’s Guide

54. IF
55. KA=expression
56. KD=expression
57. KG=expression
58. KI=expression
59. KL=expression
60. KP=expression
61. KS=expression
62. KV=expression
63. LOOP
64. MP
65. MV
66. O
67. O1 to O6
68. OFF
69. P=expression
70. PRINT
71. Ra ... Rz
72. Raa ... Rzz
73. Raaa ... Rzzz
74. Rab[index]
75. Ral[index]
76. Raw[index]
77. RA
78. RBa
79. RBb
80. RBc
81. RBd
82. RBe
83. RBf
84. RBh
85. RBi
86. RBk
87. RBl
88. RBm
89. RBo
90. RBp
91. RBr
92. RBs
93. RBt
94. RBu
95. RBw
96. RBx
97. RD
98. RE
99. RETURN
100. RI
101. RP
102. RPE
103. RPW
104. RS
105. RUN
106. RUN?
107. RV
108. RW
109. S

146

Reference

110. SILENT
111. SWITCH
112. TALK
113. TWAIT
114. V
115. VLD
116. VST
117. WAIT
118. WHILE
119. X
120. Z
121. Za
122. Zb
123. Zc
124. Zd
125. Zf
126. Zl
127. Zr
128. Zs
129. Zu
130. Zw
131. ZS

SMP Commands
[note: In the command description shown below, # is an Integer number]

1. @P

Summary Current position

Declaration @P

Return Current position in smart motor unit.

Description This is actual current position.

Group SMP Status Commands

2. @PE

Summary Current position error

Declaration @PE

Return Current position error in smart motor unit.

Description This is actual current position error.

Group SMP Status Commands

147

Smart Linear Actuator User’s Guide

3. @V

Summary Current velocity

Declaration @V

Return Current velocity in smart motor unit.

Description This is actual current speed of the motor.

Group SMP Status Commands

4. a...z

Summary User variables

Declaration None

Return No return value.

Description The first 26 variables are long integers (32 bits) and are accessed with the lower case
letters of the alphabet, a, b, c, . . . x, y, z.
a=# Set variable a to a numerical value
a=exp Set variable a to value of an expression

Group SMP Status Commands

5. aa...zzz

Summary More user variables

Declaration None

Return No return value.

Description In addition to the first 26, there are 52 more long integer variables accessible with
double and triple lower case letters: aa, bb, cc,. . . xxx, yyy, zzz. The memory space that holds
these 52 variables is more flexible, however. This same variable space can be accessed with an
array variable type. This memory space is further made flexible by the fact that it can hold 51
thirty two bit integers, or 101 sixteen bit integers, or 201 eight bit integers (all signed).

Group SMP Status Commands

6. al[index]

Summary Array variable 32 bit

Declaration al[i]=exp

Return No return value.

Description Set variable to a signed 32 bit value where index i = 0...50. The index i may be a
number, a variable a thorough z, or the sum or difference of any two variables a thorough z
(variables only).

148

Reference

Group SMP Status Commands

7. aw[index]

Summary Array variable 16 bit

Declaration aw[i]=exp

Return No return value.

Description Set variable to a signed 16 bit value where index i = 0...100. The index i may be a
number, a variable a thorough z, or the sum or difference of any two variables a thorough z
(variables only).

Group SMP Status Commands

8. ab[index]

Summary Array variable 8 bit

Declaration ab[i]=exp

Return No return value.

Description Set variable to a signed 8 bit value where index i = 0...200. The index i may be a
number, a variable a thorough z, or the sum or difference of any two variables a thorough z
(variables only).

Group SMP Status Commands

9. A

Summary Set absolute acceleration

Declaration A=expression

Return No return value.

Description Acceleration must be a positive integer within the range of 0 to 2,147,483,648. The
default is zero forcing something to be entered to get motion. A typical value is 100. If left
unchanged, while the motor is moving, this value will not only determine acceleration but also
deceleration which will form a triangular or trapezoidal velocity motion profile. This value can be
changed at any time. The value set does not get acted upon until the next G command is sent.

Group SMP Motion Commands

10. ADDR

Summary Motor's self address variable

Declaration

Return No return value.

Description

149

Smart Linear Actuator User’s Guide

Group SMP Status Commands

11. Ba

Summary Over current status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

12. Bb

Summary Parity error status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

13. Bc

Summary Communication overflow status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

14. Bd

Summary Math overflow status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

15. Be

Summary Excessive position error status bit

Declaration

150

Reference

Return No return value.

Description

Group SMP Status Commands

16. Bf

Summary Communications framing error status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

17. Bh

Summary Excessive temperature status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

18. Bi

Summary Index captured status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

19. Bk

Summary EEPROM data integrity status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

151

Smart Linear Actuator User’s Guide

20. Bl

Summary Historical left limit status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

21. Bm

Summary Real time left limit status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

22. Bo

Summary Motor off status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

23. Bp

Summary Real time right limit status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

24. Br

Summary Historical right limit status bit

Declaration

Return No return value.

152

Reference

Description

Group SMP Status Commands

25. Bs

Summary Syntax error status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

26. Bt

Summary Trajectory in progress status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

27. Bu

Summary Array index error status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

28. Bv

Summary EEPROM locked state (obsolete)

Declaration

Return No return value.

Description

Group SMP Status Commands

29. Bw

Summary Encoder wrap around status bit

153

Smart Linear Actuator User’s Guide

Declaration

Return No return value.

Description

Group SMP Status Commands

30. Bx

Summary Real time index inptut status bit

Declaration

Return No return value.

Description

Group SMP Status Commands

31. BRKENG

Summary Brake engage

Declaration BRKENG

Return No return value.

Description Issuing the BRKENG command will engate the brake.

Group SMP Brake Commands

32. BRKRLS

Summary Brake release

Declaration BRKRLS

Return No return value.

Description Issuing the BRKRLS command will release the brake.

Group SMP Brake Commands

33. BRKSRV

Summary Release brake when servo active, engage break when inactive

Declaration BRKSRV

Return No return value.

Description The command BRKSRV engages the brake automatically, should the motor stop
servoing and holding position for any reason. This might be due to loss of power or just a position
error, limit fault, over-temperature fault.

154

Reference

Group SMP Brake Commands

34. BRKTRJ

Summary Release brake when running a trajectory, engage under all other conditions. Turns
servo off when the brake is engaged.

Declaration BRKTRJ

Return No return value.

Description The command BRKTRJ will engage the brake in response to all of the events
described for command BRKSRV, plus any time the motor is not performing a trajectory. In this
mode the motor will be off, and the brake will be holding it in position, perfectly still, rather than
the motor servoing when it is at rest. As soon as another trajectory is started, the brake will
release. The time it takes for the brake to engage and release is on the order of only a few
milliseconds.

Group SMP Brake Commands

35. D

Summary Set relative distance

Declaration D=expression

Return No return value.

DescriptionThe D command allows a relative distance to be specified, instead of an absolute
position. The number following is encoder counts and can be positive or negative. The relative
distance will be added to the current position, either during or after a move. It is added to the
desired position rather than the actual position so as to avoid the accumulation of small errors due
to the fact that any servo motor is seldom exactly where it should be at any instant in time.

Group SMP Motion Commands

36. E=expression

Summary Set allowable position error

Declaration

Return No return value.

Description

Group SMP Status Commands

37. END

Summary End program execution

Declaration END

Return No return value.

155

Smart Linear Actuator User’s Guide

Description If it's necessary to stop a program, use an END command and execution will stop at
that point. An END command can also be sent by the host to intervene and stop a program running
within the motor. The SmartMotor program is never erased until a new program is downloaded.
To erase the program in a SmartMotor, download only the END command as if it were a new
program and that’s the only command that will be left on the SmartMotor until a new program is
downloaded. To compile properly, every program needs and END somewhere, even if it is never
reached. If the program needs to run continuously, the END statement has to be outside the main
loop

Group SMP Programming Commands

38. EPTR=expression

Summary Set data EEPROM pointer, 0-7999

Declaration EPTR=expression

Return No return value.

Description To read or write into this memory space it is necessary to properly locate the pointer.
This is accomplished by setting EPTR equal to the offset.

Group SMP Status Commands

39. F

Summary Load filter

Declaration

Return No return value.

Description

Group SMP Status Commands

40. F=expression

Summary Special functions control

Declaration

Return No return value.

Description

Group SMP Status Commands

41. G

Summary Start motion (GO)

Declaration G

Return No return value.

156

Reference

Description The G command does more than just start motion. It can be used dynamically during
motion to create elaborate profiles. Since the SmartMotor allows position, velocity and
acceleration to change during motion, "on-the-fly", the G command can be used to trigger the next
profile at any time.
Note: G also resets several system state flags.

Group SMP Motion Commands

42. GOSUB#, RETURN

Summary Call a subroutine, Return from subroutine

Declaration

Return No return value.

Description Just like the GOTO# command, the GOSUB# command, in conjunction with a C#
label, will redirect program execution to the location of the label. But, unlike the GOTO#
command, the C# label needs a RETURN command to return the program execution to the
location of the GOSUB# command that initiated the redirection. There may be many sections of a
program that need to perform the same basic group of commands. By encapsulating these
commands between a C# label and a RETURN, they may be called any time from anywhere with
a GOSUB#, rather than being repeated in their totality over and over again. There can be as many
as one thousand different subroutines (0 -999) and they can be accessed as many times as the
application requires.
By pulling sections of code out of a main loop and encapsulating them into subroutines, the main
code can also be easier to read. Organizing code into multiple subroutines is a good practice.
The commands that can conditionally direct program flow to different areas use a constant [#] like
1 or 25, a variable like a or al[#] or a function involving constants and/or variables a+b or a/[#].
Only one operator can be used in a function. The following is a list of the operators:

+ Addition
- Subtraction
* Multiplication
⁄ Division
== Equals (use two =)
!= Not equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
& Bit wise AND
| Bit wise OR

Group SMP Programming Commands

43. GOTO#, C#

Summary Redirect program flow, Subroutine label (C0-C999)

Declaration GOTO#, C#

Return No return value.

Description The most basic commands for redirecting program flow, without inherent conditions,
are GOTO# in conjunction with C#. Labels are the letter C followed by a number (#) between 0

157

Smart Linear Actuator User’s Guide

and 999 and are inserted in the program as place markers. If a label, C1 for example, is placed in a
program and that same number is placed at the end of a GOTO command, GOTO1, the program
flow will be redirected to label C1 and the program will proceed from there.
As many as a thousand labels can be used in a program (0 -999), but, the more GOTO commands
used, the harder the code will be to debug or read. Try using only one and use it to create the
infinite loop necessary to keep the program running indefinitely, as some embedded programs do.
Put a C1 label near the beginning of the program, but after the initialization code and a GOTO1 at
the end and every time the GOTO1 is reached the program will loop back to label C1 and start
over from that point until the GOTO1 is reached, again, which will start the process at C1 again,
and so on. This will make the program run continuously without ending. Any program can be
written with only one GOTO. It might be a little harder, but it will tend to force better program
organization, which in turn, will make it easier to be read and changed.
Note: Calling subroutines from the host can crash the stack.

Group SMP Programming Commands

44. I

Summary Hardware index position variable

Declaration

Return No return value.

Description

Group SMP Status Commands

45. I1 to I12

Summary Set/Get state of Input switch I1,I2...I12

Declaration

Return No return value.

Description

Group SMP Status Commands

46. IF, ELSE, ELSEIF, ENDIF

Summary Conditional test

Declaration IF expression, If structure element, If structure element, End IF statement

Return No return value.

Description Once the execution of the code reaches the IF command, the code between that IF
and the following ENDIF will execute only when the condition directly following the IF command
is true.

 IF a == 1

158

Reference

 b = 1

 ENDIF

Variable b will only get set to one if variable a is equal to one. If a is not equal to one, then the
program will continue to execute using the command following the ENDIF command. Notice also
that the SmartMotor language uses a single equal sign (=) to make an assignment, such as where
variable a is set to equal the logical state of input A. Alternatively, a double equal (==) is used as a
test, to query whether a is equal to 1 without making any change to a. These are two different
functions. Having two different syntaxes has farther reaching benefits.
The ELSE and ELSEIF commands can be used to add flexibility to the IF statement. If it were
necessary to execute different code for each possible state of variable a, the program could be
written as follows:

 IF a == 0

 b = 1

 ELSEIF a == 1

 c = 1

 ELSEIF a == 2

 c = 2

 ELSE

 d = 1

 ENDIF

There can be many ELSEIF statements, but at most one ELSE. If the ELSE is used, it needs to be
the last statement in the structure before the ENDIF. There can also be IF structures inside IF
structures. That's called "nesting" and there is no practical limit to the number of structures that
can nest within one another.

Group SMP Programming Commands

47. KA=expression

Summary PID acceleration feed-forward

Declaration

Return No return value.

Description

Group SMP Status Commands

159

Smart Linear Actuator User’s Guide

48. KD=expression

Summary PID derivative compensation

Declaration

Return No return value.

Description

Group SMP Status Commands

49. KG=expression

Summary PID gravity compensation

Declaration

Return No return value.

Description

Group SMP Status Commands

50. KI=expression

Summary PID integral compensation

Declaration

Return No return value.

Description

Group SMP Status Commands

51. KL=expression

Summary PID integral limit

Declaration

Return No return value.

Description

Group SMP Status Commands

52. KP=expression

Summary PID proportional compensation

Declaration

Return No return value.

160

Reference

Description

Group SMP Status Commands

53. KS=expression

Summary PID derivative term sample rate

Declaration

Return No return value.

Description

Group SMP Status Commands

54. KV=expression

Summary PID velocity feed forward

Declaration

Return No return value.

Description

Group SMP Status Commands

55. MP

Summary Enable position mode

Declaration MP

Return No return value.

Description Position mode is the default mode of operation for the SmartMotor. If the mode were
to be changed, the MP command would put it back into position mode. In position mode, the P
and D commands will govern motion

Group SMP Motion Commands

56. MV

Summary Enable velocity mode

Declaration MV

Return No return value.

Description Velocity mode will allow continuous rotation of the motor shaft. In Velocity mode,
the programmed position using the P or the D commands is ignored. Acceleration and velocity
need to be specified using the A= and the V= commands. After a G command is issued, the motor
will accelerate up to the programmed velocity and continue at that velocity indefinitely. In
velocity mode as in Position mode, Velocity and Acceleration are changeable on-the-fly, at any

161

Smart Linear Actuator User’s Guide

time. Simply specify new values and enter another G command to trigger the change. In Velocity
mode the velocity can be entered as a negative number, unlike in Position mode where the location
of the target position determines velocity direction or sign. If the 32 bit register that holds position
rolls over in velocity mode it will have no effect on the motion.

Group SMP Motion Commands

57. O

Summary Set/Reset origin to any position

Declaration O=expression

Return No return value.

Description The O command (using the letter O, not the number zero) allows the host or program
not just to declare the current position zero, but to declare it to be any position, positive or
negative. The exact position to be re-declared is the ideal position, not the actual position which
may be changing slightly due to hunting or shaft loading. The O= command directly changes the
motor's position register and can be used as a tool to avoid +/-31 bit roll over position mode
problems. If the SmartMotor runs in one direction for a very long time it will reach position +/-
2,147,483,648 which will cause the position counter to change sign. While that is not an issue with
Velocity Mode, it can create problems in position mode

Group SMP Motor Commands

58. O1 to O6

Summary Set/Get state of Output switch O1,O2...O6

Declaration

Return No return value.

Description

Group SMP Status Commands

59. OFF

Summary Turn motor servo off

Declaration OFF

Return No return value.

Description The OFF command will stop the motor from servoing, much as a position\ error or
limit fault would. When the servo is turned off, one of the status LEDs will revert from Green to
Red.

Group SMP Motor Commands

60. P

Summary Set position

162

Reference

Declaration P=expression

Return No return value.

Description The P command sets an absolute end position. The units are encoder counts and can
be positive or negative. The end position can be set or changed at any time during or at the end of
previous moves.

Group SMP Motion Commands

61. PRINT

Summary Print to RS-232

Declaration PRINT()

Return No return value.

Description A variety of data formats can exist within the parentheses of the PRINT() command.
A text string is marked as such by enclosing it between double quotation marks. Variables can be
placed between the parentheses as well as two variables separated by one operator. To send out a
specific byte value, prefix the value with the # sign and represent the value with as many as three
decimal digits ranging from 0 to 255. e.g. it is necessary to send #13 as the last character while
using SLA OS software's SMP debug mode. Multiple types of data can be sent in a single
PRINT() statement by separating the entries with commas. Do not use spaces outside of text
strings because SmartMotors use spaces as delimiters along with carriage returns and line feeds.
The following are all valid print statements and will transmit data through the main RS-232
channel:

 PRINT("Hello world",#13) 'text

 PRINT(a*b,#13) 'expression

 PRINT(#32,#13) 'data

 PRINT("A",a,a*b,#13) 'all

Group SMP Debug Commands

62. Ra ... Rz

Summary Report variables

Declaration Ra ... Rz

Return Return long integer (32 bits) value of the variable.

Description Report variables a ... z

Group SMP Status Commands

163

Smart Linear Actuator User’s Guide

63. Raa ... Rzz

Summary Report variables

Declaration Raa ... Rzz

Return Return long integer (32 bits) value of the variable.

Description Report variables aa ... zz

Group SMP Status Commands

64. Raaa ... Rzzz

Summary Report variables

Declaration Raaa ... Rzzz

Return Return long integer (32 bits) value of the variable.

Description Report variables aaa ... zzz

Group SMP Status Commands

65. Rab[index]

Summary Report byte array variables (8-bit)

Declaration Rab[index]

Return Return 8 bit variable value.

Description Report 8 bit variable value Rab[i]

Group SMP Status Commands

66. Ral[index]

Summary Report long array variables (32-bit)

Declaration Ral[index]

Return Return 32 bit variable value.

Description Report 32 bit variable value Ral[i]

Group SMP Status Commands

67. Raw[index]

Summary Report word array variables (16-bit)

Declaration Raw[index]

Return Return 16 bit variable value.

164

Reference

Description Report 16 bit variable value Raw[i]

Group SMP Status Commands

68. RA

Summary Report acceleration

Declaration RA

Return Return acceleration in smart motor unit.

Description Report buffered acceleration.

Group SMP Status Commands

69. RBa

Summary Report over current status

Declaration

Return No return value.

Description

Group SMP Status Commands

70. RBb

Summary Report parity error status

Declaration

Return No return value.

Description

Group SMP Status Commands

71. RBc

Summary Report communications error status

Declaration

Return No return value.

Description

Group SMP Status Commands

72. RBd

Summary Report user math overflow status

165

Smart Linear Actuator User’s Guide

Declaration

Return No return value.

Description

Group SMP Status Commands

73. RBe

Summary Report position error status

Declaration

Return No return value.

Description

Group SMP Status Commands

74. RBf

Summary Report communications framing

Declaration

Return No return value.

Description

Group SMP Status Commands

75. RBh

Summary Report overheat status

Declaration

Return No return value.

Description

Group SMP Status Commands

76. RBi

Summary Report index status

Declaration

Return No return value.

Description

Group SMP Status Commands

166

Reference

77. RBk

Summary Report EEPROM read/write status

Declaration

Return No return value.

Description

Group SMP Status Commands

78. RBl

Summary Report historical left limit status

Declaration

Return No return value.

Description

Group SMP Status Commands

79. RBm

Summary Report negative limit status

Declaration

Return No return value.

Description

Group SMP Status Commands

80. RBo

Summary Report motor off status

Declaration

Return No return value.

Description

Group SMP Status Commands

81. RBp

Summary Report positive limit status

Declaration

Return No return value.

167

Smart Linear Actuator User’s Guide

Description

Group SMP Status Commands

82. RBr

Summary Report historical right limit status

Declaration

Return No return value.

Description

Group SMP Status Commands

83. RBs

Summary Report program scan status

Declaration

Return No return value.

Description

Group SMP Status Commands

84. RBt

Summary Report trajectory status

Declaration

Return No return value.

Description

Group SMP Status Commands

85. RBu

Summary Report user array index status

Declaration

Return No return value.

Description

Group SMP Status Commands

86. RBw

Summary Report wrap around status

168

Reference

Declaration

Return No return value.

Description

Group SMP Status Commands

87. RBx

Summary Report hardware indexinput level

Declaration

Return No return value.

Description

Group SMP Status Commands

88. RD

Summary Return buffered move distance value

Declaration

Return No return value.

Description

Group SMP Status Commands

89. RE

Summary Report buffered maximum position error

Declaration

Return No return value.

Description

Group SMP Status Commands

90. RI

Summary Report last stored index position

Declaration

Return No return value.

Description

Group SMP Status Commands

169

Smart Linear Actuator User’s Guide

91. RP

Summary Report present position

Declaration

Return No return value.

Description

Group SMP Status Commands

92. RPE

Summary Report present position error

Declaration

Return No return value.

Description

Group SMP Status Commands

93. RPW

Summary Report position and status

Declaration

Return No return value.

Description

Group SMP Status Commands

94. RS

Summary Report status byte

Declaration

Return No return value.

Description

Group SMP Status Commands

95. RUN

Summary Execute stored user program

Declaration RUN

Return No return value.

170

Reference

Description If the SmartMotor is reset with a Z command, all previous variables and mode
changes will be erased for a fresh start and the program will begin to execute from the top.
Alternatively the RUN command can be used to start the program, in which case the state of the
motor is unchanged and its program will be invoked.

Group SMP Programming Commands

96. RUN?

Summary Halt program if no RUN issued

Declaration Run?

Return No return value.

Description To keep a downloaded program from executing at power-up start the program with
the RUN? Command. It will prevent the program from starting when power is applied, but it will
not prevent the program from running when the SmartMotor sees a RUN command from a host
over the RS-232 port.

Group SMP Programming Commands

97. RV

Summary Report velocity

Declaration

Return No return value.

Description

Group SMP Status Commands

98. RW

Summary Report status word

Declaration

Return No return value.

Description

Group SMP Status Commands

99. S

Summary Stop move in progress abruptly

Declaration S

Return No return value.

171

Smart Linear Actuator User’s Guide

Description If the S command is issued while a move is in progress it will cause an immediate
and abrupt stop with all the force the motor has to offer. After the stop, assuming there is no
position error, the motor will still be servoing. The S command works in both Position and
Velocity modes.

Group SMP Motion Commands

100. SILENT, TALK

Summary Suppress/Enable PRINT() outputs

Declaration S

Return SILENT, TALK

Description SILENT command causes all PRINT() output to be suppressed. This is necessary
when host controller is also sending the commands to the SmartMotors as it can interfere with the
echo mechanism. To de-assert silent mode, issue TALK command. This is useful for the
debugging of SMP programs along with the Motor terminal tab of the SLA OS software. To
receive the PRINT statements from the SMP program, select the checkbox at the top of the Motor
terminal to receive output in the window.

Group SMP Debug Commands

101. SWITCH, CASE, DEFAULT, BREAK, ENDS

Summary Program execution control, Switch-case structure element, Switch-case structure
element, Program execution flow control, Program execution control

Declaration SWITCH expression, CASE expression, DEFAULT, BREAK, ENDS

Return No return value.

Description Long, drawn out IF structures can be cumbersome, and burden the program visually.
In these instances it can be better to use the SWITCH structure. The following code would
accomplish the same thing as the second example program given in the IF command:

 SWITCH a

 CASE 0

 b=1

 BREAK

 CASE 1

 c=1

 BREAK

 CASE 2

 c=2

172

Reference

 BREAK

 DEFAULT

 d=1

 BREAK

 ENDS

Just as a rotary switch directs electricity, the SWITCH structure directs the flow of the program.
The BREAK statement then jumps the code execution to the code following the associated ENDS
command. The DEFAULT command covers every condition other than those listed. It is optional.
Note: The SWITCH statement makes use of the same memory space as variable "zzz". Do not use
this variable or array space when using SWITCH.

Group SMP Programming Commands

102. TWAIT

Summary Wait during trajectory

Declaration TWAIT

Return No return value.

Description The TWAIT command pauses program execution while the motor is moving. Either
the controlled end of a trajectory, or the abrupt end of a trajectory due to an error, will terminate
the TWAIT waiting period. If there were a succession of move commands without this command,
or similar waiting code between them, the commands would overtake each other because the
program advances, even while moves are taking place. The following program has the same effect
as the TWAIT command, but has the added virtue of allowing other things to be programmed
during the wait, instead of just waiting. Such things would be inserted between the two
commands.

 WHILE Bt

 LOOP

Group SMP Programming Commands

103. V

Summary Set maximum permitted velocity

Declaration V=expression

Return No return value.

Description Use the V command to set a limit on the velocity the motor can accelerate to. That
limit becomes the slew rate for all trajectory based motion whether in position mode or velocity
mode. The value defaults to zero so it must be set before any motion can take place. The new
value does not take effect until the next G command is issued.

173

Smart Linear Actuator User’s Guide

Group SMP Motion Commands

104. VLD

Summary Sequentially load variables from data EEPROM

Declaration VLD(variable,index)

Return No return value.

Description To load variables, starting at the pointer, use the VLD command. In the "variable"
space of the command put the name of the variable and in the "index" space put the number of
sequential variables to be loaded.

Group SMP Status Commands

105. VST

Summary Sequentially store variables to data EEPROM

Declaration VST(variable,index)

Return No return value.

Description To store a series of variables, use the VST command. In the "variable" space of the
command put the name of the variable and in the "index" space put the total number of sequential
variables that need to be stored. Enter a one if just the variable specified needs to be stored. The
actual sizes of the variables will be recognized automatically.

Group SMP Status Commands

106. WAIT

Summary Wait (exp) sample periods

Declaration WAIT=exp

Return No return value.

Description There will probably be circumstances where the program execution needs to be
paused for a specific period of time. Time, within the SmartMotor, is tracked in terms of servo
sample periods. It is recommended that the Unit Conversion calculator available in the software be
used for getting the corresponding number from seconds. The following code would be the same
as WAIT=1000, only it will allow code to executed during the wait if it is placed between the
WHILE and the LOOP.

 CLK = 0 'Reset CLK to 0

 WHILE CLK

Group SMP Programming Commands

174

Reference

107. WHILE, LOOP

Summary Conditional program flow command, While structure element

Declaration WHILE expression, LOOP

Return No return value.

Description The most basic looping function is a WHILE command. The WHILE is followed by
an expression that determines whether the code between the WHILE and the following LOOP
command will execute or be passed over. While the expression is true, the code will execute. An
expression is true when it is non-zero. If the expression results in a "zero" then it is false. The
following is an example of a valid WHILE loop which will execute ten times.

 a = 1

 WHILE a < 10

 a = a + 1

 LOOP

The task or tasks within the WHILE loop will execute as long as the function remains true.
The BREAK command can be used to break out of a WHILE loop, although that somewhat
compromises the elegance of a WHILE statement's single test point, making the code a little
harder to follow. The BREAK command should be used sparingly or preferably not at all in the
context of a WHILE.

Group SMP Programming Commands

108. X

Summary Decelerate to stop

Declaration X

Return No return value.

Description If the X command is issued while a move is in progress it will cause the motor to
decelerate to a stop at the last entered A= value. When the motor comes to rest it will servo in
place until commanded to move again. The X command works in both Position and Velocity
modes.

Group SMP Motion Commands

109. Z

Summary Total system reset

Declaration

Return No return value.

175

Smart Linear Actuator User’s Guide

Description

Group SMP Status Commands

110. Za

Summary Reset current limit violation latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

111. Zb

Summary Reset serial data parity violation latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

112. Zc

Summary Reset communications buffer overflow latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

113. Zd

Summary Reset math overflow violation latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

114. Zf

Summary Reset serial comm framing error latch bit

176

Reference

Declaration

Return No return value.

Description

Group SMP Status Commands

115. Zl

Summary Reset historical left limit latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

116. Zr

Summary Reset historical right limit latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

117. Zs

Summary Reset command scan error latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

118. Zu

Summary Reset user array index access latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

177

Smart Linear Actuator User’s Guide

119. Zw

Summary Reset encoder wrap around event latch bit

Declaration

Return No return value.

Description

Group SMP Status Commands

120. ZS

Summary Reset system latches to power-up state

Declaration

Return No return value.

Description

Group SMP Status Commands

178

Reference

eCylinder/eRotary SMP Commands Reference
Following are the SMP Commands which can be used in a Smart Motor Program (SMP). They are
arranged in related groups and in alphabetic order for easy access.

SMP Commands in Related Groups
The SMP Commands are categorized in each group depending on their functionalities.

• SMP Motion Commands

These commands are responsible for the motion of a SmartMotor in various modes.

o ACC
o al
o MODE
o VEL

SMP Commands in Alphabetic Order

1. ACC
2. al
3. MODE
4. VEL

SMP Commands
[note: In the command description shown below, # is an Integer number]

1. ACC

Summary Set absolute acceleration for the specified index position.

Declaration ACC[index]=expression

Return No return value.

Description Acceleration must be a positive integer > 0. The default is zero forcing something to
be entered to get motion. A typical value is 100. If left unchanged, while the motor is moving, this
value will not only determine acceleration but also deceleration which will form a triangular or
trapezoidal velocity motion profile. This value can be changed at any time. The value set does not
get acted upon until the next G command is sent.

179

Smart Linear Actuator User’s Guide

Group SMP Motion Commands

2. al

Summary Set position for the specified index position.

Declaration al[index]=expression

Return No return value.

Description The command sets an absolute end position. The units are encoder counts and can be
positive or negative. The end position can be set or changed at any time during or at the end of
previous moves.

Group SMP Motion Commands

3. MODE

Summary Set mode for the specified index position.

Declaration MODE[index]=expression

Return No return value.

Description The command sets either absolute (default) or relative mode for the position. If a
given position has absolute mode then the motor moves to the specified position. If a given
position has relative mode then the motor moves relative to the current position by incremental
distance equal to the specified position.

Group SMP Motion Commands

4. VEL

Summary Set maximum permitted velocity for the specified index position.

Declaration VEL[index]=expression

Return No return value.

Description Use the VEL command to set a limit on the velocity the motor can accelerate to. That
limit becomes the slew rate for all trajectory based motion. The value defaults to zero so it must be
set before any motion can take place. The new value does not take effect until the next G
command is issued.

Group SMP Motion Commands

180

	Smart Linear Actuator
	Operating Software 1.9 User Manual

	New features summary
	v1.9
	v1.8
	v1.7.1
	v1.7
	v1.6
	v1.5.1
	v1.5
	v1.4.1
	v1.4
	v1.3
	v1.2
	v1.1
	v1.0

	Contacting
	SITE LICENSE AGREEMENT
	Technical Support

	Quick Start
	Quick Introduction to Configuration of SLA OS
	Quick Configuration

	Quick Introduction to Multi Motor Programming with SLA OS
	Quick Position Data Creation
	Quick Programming
	Quick Results

	Quick Introduction to Smart Motor Programming with SLA OS
	Quick Programming
	Quick Results

	Quick Introduction to Binary Coded Decimal Programming with
	Quick Position Data Creation
	Quick Programming
	Quick Results

	Introduction
	Installing SLA OS Software
	Configuration
	Basic Configuration
	I/O Configuration

	Manual Operations
	Creating Position Data
	Creating Position Data
	Creating Points
	Creating Paths
	Advanced ways to create paths
	Import Dataset
	Teach Dataset

	Introduction to eCylinder/eRotary
	Configuration Changes
	eRotary Motion Specification

	Programming
	Creating Multi Motor Programs (MMP)
	Creating Smart Motor Programs (SMP)
	Creating Binary Coded Decimal Programs (BCD)

	External Systems
	Examples
	Sample programs
	MMP programs
	SMP programs

	Reference
	MMP Commands Reference
	MMP Commands in Related Groups
	MMP Declaration Commands
	MMP Assignment Commands
	MMP Flow Control Commands
	MMP Error Handling Commands
	MMP Conversion Commands
	MMP Variable Info Commands
	MMP Math Commands
	MMP String Commands
	MMP User Input Commands
	MMP Miscellaneous Commands
	MMP Operator Commands

	MMP Commands in Alphabetic Order
	MMP Commands
	Abs Function
	Array Function
	Const Definition
	CStr Function
	Dim Definition
	Do Statement
	DoEvents Instruction
	End Instruction
	Err Object
	Exit Instruction
	For Statement
	For Each Statement
	Function Definition
	Goto Instruction
	If Statement
	InputBox$ Function
	LBound Function
	Main Sub
	MsgBox Instruction/Function
	On Error Instruction
	Operators
	Option Definition
	ReDim Instruction
	Select Case Statement
	Set Instruction
	Str$ Function
	Sub Definition
	UBound Function
	Wait Instruction
	While Statement

	SLA Commands Reference
	SLA Commands in Related Groups
	SLA Initialization Commands
	SLA Motion Commands
	SLA I/O Commands
	SLA Motor Commands
	SLA Multi Tasking Commands
	SLA State Management Commands
	SLA Axis Transformation Commands
	SLA Instrumentation Commands
	SLA Miscellaneous Commands

	SLA Commands in Alphabetic Order
	SLA Commands
	AppendPaths
	ApplyTransformation
	ApplyTransformationToDataset
	ApplyTransformationToPath
	ApplyTransformationToPoint
	BeginningPathPoint
	Calibrate
	CheckSwitch
	CurrentCoordinateSystem
	CurrentPoint
	DoLine
	DoPath
	DoPositionMove
	DoRelativeMove
	DoVelocityMove
	ElapsedTimer
	GetValue
	LogMessage
	MaxOfPath
	MinOfPath
	MotorStatus
	ReflectAxis
	RemoveValue
	Reset
	ReversePath
	RotateAxis
	RotateAxisAroundPoint
	RunDiagnostics
	SaveValue
	ScaleAxis
	SendMail
	SetServoOff
	SetSwitch
	ShiftAxis
	StartProgram
	StartTimer
	StopMotion
	StopProgram
	WaitForStop
	WaitForSwitch

	EXCEL Commands Reference
	EXCEL Commands in Related Groups
	EXCEL Initialization Commands
	EXCEL Interaction Commands

	EXCEL Commands in Alphabetic Order
	EXCEL Commands
	ReadFile
	GetValue

	VISION Commands Reference
	VISION Commands in Related Groups
	VISION Connection Commands
	VISION Interaction Commands

	VISION Commands in Alphabetic Order
	VISION Commands
	ConnectCognex
	ConnectDVT
	GetCognexValue
	GetDVTValue
	ProcessCognex
	ProcessDVT

	HMI Commands Reference
	HMI Commands in Related Groups
	HMI Data Commands
	HMI Motion Commands

	HMI Commands in Alphabetic Order
	HMI Commands
	ReadBinary
	ReadRegister
	SaveIO
	WaitForStop
	WriteBinary
	WriteRegister

	SERIAL Commands Reference
	SERIAL Commands in Related Groups
	SERIAL Connection Commands
	SERIAL Interaction Commands

	SERIAL Commands in Alphabetic Order
	SERIAL Commands
	ClosePort
	OpenPort
	ReadPort
	WritePort

	SLA SMP Commands Reference
	SMP Commands in Related Groups
	SMP Status Commands
	SMP IO Commands
	SMP Brake Commands (where optional brake exists)
	SMP Tuning Commands
	SMP Reset Commands
	SMP Programming Commands
	SMP Motion Commands
	SMP Variables Commands
	SMP Motor Commands
	SMP Debug Commands

	SMP Commands in Alphabetic Order
	SMP Commands
	@P
	@PE
	@V
	a...z
	aa...zzz
	al[index]
	aw[index]
	ab[index]
	A
	ADDR
	Ba
	Bb
	Bc
	Bd
	Be
	Bf
	Bh
	Bi
	Bk
	Bl
	Bm
	Bo
	Bp
	Br
	Bs
	Bt
	Bu
	Bv
	Bw
	Bx
	BRKENG
	BRKRLS
	BRKSRV
	BRKTRJ
	D
	E=expression
	END
	EPTR=expression
	F
	F=expression
	G
	GOSUB#, RETURN
	GOTO#, C#
	I
	I1 to I12
	IF, ELSE, ELSEIF, ENDIF
	KA=expression
	KD=expression
	KG=expression
	KI=expression
	KL=expression
	KP=expression
	KS=expression
	KV=expression
	MP
	MV
	O
	O1 to O6
	OFF
	P
	PRINT
	Ra ... Rz
	Raa ... Rzz
	Raaa ... Rzzz
	Rab[index]
	Ral[index]
	Raw[index]
	RA
	RBa
	RBb
	RBc
	RBd
	RBe
	RBf
	RBh
	RBi
	RBk
	RBl
	RBm
	RBo
	RBp
	RBr
	RBs
	RBt
	RBu
	RBw
	RBx
	RD
	RE
	RI
	RP
	RPE
	RPW
	RS
	RUN
	RUN?
	RV
	RW
	S
	SILENT, TALK
	SWITCH, CASE, DEFAULT, BREAK, ENDS
	TWAIT
	V
	VLD
	VST
	WAIT
	WHILE, LOOP
	X
	Z
	Za
	Zb
	Zc
	Zd
	Zf
	Zl
	Zr
	Zs
	Zu
	Zw
	ZS

	eCylinder/eRotary SMP Commands Reference
	SMP Commands in Related Groups
	SMP Motion Commands

	SMP Commands in Alphabetic Order
	SMP Commands
	ACC
	al
	MODE
	VEL

